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Preface

Current users typically interact with the Internet through the use of a Web
browser and a client/server based connection to a Web server. However, as
we move forward to allow true machine-to-machine communication, we are in
need of more scalable solutions which employ the use of decentralized tech-
niques to add redundancy, fault tolerance and scalability to distributed sys-
tems. Distributed systems take many forms, appear in many areas and range
from truly decentralized systems, like Gnutella and Jxta, centrally indexed
brokered systems like Web services and Jini and centrally coordinated sys-
tems like SETI@Home.

From P2P to Web Services and Grids: Peers in a client/server world pro-
vides a comprehensive overview of the emerging trends in peer-to-peer (P2P),
distributed objects, Web services and Grid computing technologies, which
have redefined the way we think about distributed computing and the Inter-
net. This book has two main themes: applications and middleware. Within
the context of applications, examples of the many diverse architectures are
provided including: decentralized systems like Gnutella and Freenet; brokered
ones like Napster; and centralized applications like SETI and conventional
Web servers. For middleware, the book covers Jxta, as a programming in-
frastructure for P2P computing, along with Web services, Grid computing
paradigms, e.g., Globus and OGSA, and distributed-object architectures, e.g.,
Jini. Each technology is described in detail, including source code where ap-
propriate, and their capabilities are analysed in the context of the degree of
centralization or decentralization they employ.

To maintain coherency, each system is discussed in terms of the generalized
taxonomy, which is outlined in the first chapter. This taxonomy serves as a
placeholder for the systems presented in the book and gives an overview of the
organizational differences between the various approaches. Most of the sys-
tems are discussed at a high level, particularly addressing the organization and
topologies of the distributed resources. However, some (e.g., Jxta, Jini, Web
services and, to some extent, Gnutella) are discussed in much more detail,
giving practical programming tutorials for their use. Security is paramount
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throughout and introduced with a dedicated chapter outlining the many ap-
proaches to security within distributed systems.

Why did I decide to write this book?

I initially wrote the book for my lecture course in the School of Computer
Science at Cardiff University on Distributed Systems. I wanted to give the stu-
dents a broad overview of distributed-computing techniques that have evolved
over the past decade. The text therefore outlines the key applications and mid-
dleware used to construct distributed applications today. I wrote each lecture
as a book chapter and these notes have been extremely well received by the
students and therefore I decided to extend this into a book for their use and
for others ... so:

Who should read this book?

This book, I believe, has a wide-ranging scope. It was initially written for
BSc students, with an extensive computing background, and MSc students,
who have little or no prior computing experience, i.e., some students had
never written a line of code in their lives !... Therefore, this book should
appeal to people with various computer programming abilities but also to the
casual reader who is simply interested in the recent advances in the distributed
systems world.

Readers will learn about the various distributed systems that are available
today. For a designer of new applications, this will provide a good reference.
For students, this text would accompany any course on distributed computing
to give a broader context of the subject area. For a casual reader, interested in
P2P and Grid computing, the book will give a broad overview of the field and
specifics about how such systems operate in practice without delving into the
low-level details. For example, to both casual and programming-level readers,
all chapters will be of interest, except some parts of the Gnutella chapter
and some sections of the deployment chapters, which are more tuned to the
lower-level mechanisms and therefore targeted more to programmers.

Organization

Chapter 1: Introduction: In this chapter, an introduction is given into
distributed systems, paying particular attention to the role of middleware.
A taxonomy is constructed for distributed systems ranging on a scale from
centralized to decentralized depending on how resources or services are
organized, discovered and how they communicate with each other. This
will serve as an underlying theme for the understanding of the various
applications and middleware discussed in this book.

Chapter 2: Peer-2-Peer Systems: This chapter gives a brief history of
client/server and peer-to-peer computing. The current P2P definition is
stated and specifics of the P2P environment that distinguish it from
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client/server are provided: e.g., transient nodes, multi-hop, NAT, firewalls
etc. Several examples of P2P technologies are given, along with applica-
tion scenarios for their use and categorizations of their behaviour within
the taxonomy described in the first chapter.

Chapter 3: Web Services: This chapter introduces the concept of machine-
to-machine communication and how this fits in with the existing Web
technologies and future scopes. This leads onto a high-level overview of
Web services, which illustrates the core concepts without getting bogged
down with the deployment details.

Chapter 4: Grid Computing: This chapter introduces the idea of a com-
putational Grid environment, which is typically composed of a number
of heterogeneous resources that may be owned and managed by different
administrators. The concept of a “virtual organization” is discussed along
with its security model, which employs a single sign-on mechanism. The
Globus toolkit, the reference implementation that can be used to program
computational Grids, is then outlined giving some typical scenarios.

Chapter 5: Jini: This chapter gives an overview of Jini, which provides an
example of a distributed-object based technology. A background is given
into the development of Jini and into the network plug-and-play manner in
which Jini accesses distributed objects. The discovery of look-up servers,
searching and using Jini services is described in detail and advanced Jini
issues, such as leasing and events are discussed.

Chapter 6: Gnutella: This chapter combines a conceptual overview of
Gnutella and the details of the actual Gnutella protocol specification.
Many empirical studies are then outlined that illustrate the behaviour of
the Gnutella network in practice and show the many issues which need to
be overcome in order for this decentralized structure to succeed. Finally,
the advantages and disadvantages of this approach are discussed.

Chapter 7: Scalability: In this chapter, we look at scalability issues by
analysing the manner in which peers are organized within popular P2P
networks. First, social networks are introduced and compared against their
P2P counterparts. We then explore the use of decentralized P2P networks
within the context of file sharing. It is shown why in practice, neither
extreme (i.e., completely centralized or decentralized architectures) gives
effective results and therefore why most current P2P applications use a
hybrid of the two approaches.

Chapter 8: Security: This chapter covers the basic elements of security
in a distributed system. It covers the various ways that a third party can
gain access to data and the design issues involved in building a distributed
security system. It then gives a basic overview of cryptography and de-
scribes the various ways in which secure channels can be set up, using
public-key pairs or by using symmetric keys, e.g., shared secret keys or
session keys. Finally, secure mobile code is discussed within the concept
of sandboxing.
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Chapter 9: Freenet: This chapter gives a concise description of the Freenet
distributed information storage system, which is real-world example of
how the various technologies, so far discussed, can be integrated and used
within a single system. For example: Freenet is designed to work within a
P2P environment; it addresses scalability through the use of an adaptive
routing algorithm that creates a centralized/decentralized network topol-
ogy dynamically; and it address a number of privacy issues by using a
combination of hash functions and public/private key encryption.

Chapter 10: Jxta: This chapter introduces Jxta that provides a set of open,
generalized, P2P protocols to allow any connected device (cell phone to
PDA, PC to server) on the network to communicate and collaborate. An
overview of the motivation behind Jxta is given followed by a description
of its key concepts. Finally, a detailed overview of the six Jxta protocols
is given.

Chapter 11: Distributed Object Deployment Using Jini: This chap-
ter describes how one would use Jini in practice. This is illustrated through
several simple RMI and Jini applications that describe how the individ-
ual parts and protocols fit together and give a good context for the Jini
chapter and how the deployment differs from other systems discussed in
this book.

Chapter 12: P2P Deployment Using Jxta: This chapter uses several
Jxta programming examples to illustrate some issues of programming and
operating within a P2P environment. A number of key practical issues,
such as out-of-date advertisements and peer configuration, which have to
be dealt with in any P2P application are discussed and illustrated by
outlining the potential solutions employed by Jxta.

Chapter 13: Web Services Deployment: This chapter describes the
Web services deployment technologies, typically used for representing and
invoking Web services. Specifically, three core technologies are discussed in
detail: SOAP for wrapping XML messages within an envelope, WSDL for
representing the Web services interface description, and UDDI for storing
indexes of the locations of Web services.

Chapter 14: OGSA: This chapter discusses the Open Grid Service Ar-
chitecture (OGSA), which extends Web services into the Grid computing
arena by using WSDL to achieve self-descriptive, discoverable services
that can be referenced during their lifetime, i.e., maintain state. OGSI is
discussed, which provides an implementation of the OGSA ideas. This is
followed by OGSI’s supercessor, WSRF, which translates the OGSI defi-
nitions into representations that are compatible with other emerging Web
service standards.

Disclaimer

Within this book, I draw in a number of examples from file-sharing programs,
such as Napster, Gnutella (e.g., Limewire), Fastrack and KaZaA to name a
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few. The reason for this is to illustrate the different approaches in the orga-
nization of distributed systems in a computational scientific context. Under
no circumstances, using this text, am I endorsing or supporting any or all of
these file-sharing applications in their current legal battles concerning copy-
right issues.

My focus here is on the use of this infrastructure in many other scientific
situations where there is no question of their legality. We can learn a lot from
such applications when designing future Grids and P2P systems, both from
a computational science aspect and from a social aspect, in the sense of how
users behave as computing peers within such a system, i.e., do they share or
not? These studies give us insight about how we may approach the scalability
issues in future distributed systems.

English Spelling

I struggled with the appropriate spelling of some words, which in British En-
glish, should (arguably) be spelt with an ‘s’ but in almost all related literature
within this subject area, they are spelt with a ‘z’, e.g., organize, centralize,
etc. After much dialogue with colleagues and Springer, we decided on a com-
promise; that is, I shall use an amalgamation of America English and British
English known as mid-Atlantic English.... Therefore, for the set of such words,
I will use the ‘z’ form. These include derivatives of: authorize, centralize, de-
centralize, generalize, maximize, minimize, organize, quantize, serialize, spe-
cialize, standardize, utilize, virtualize and visualize. Otherwise, I will use the
British English spelling e.g. advertise, characterise, conceptualise, customise,
realise, recognise, stabilise etc. Interestingly, however, even the Oxford Concise
English Dictionary lists many of these words in their ‘z’ form....
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1

Introduction

Recently, there has been an explosion of applications using peer-to-peer (P2P)
and Grid-computing technology. On the one hand, P2P has become ingrained
in current grass-roots Internet culture through applications like Gnutella [6]
and SETI@Home [3]. It has appeared in several popular magazines including
the Red Herring and Wired, and frequently quoted as being crowned by For-
tune as one of the four technologies that will shape the Internet’s future. The
popularity of P2P has spread through to academic and industrial circles, be-
ing propelled by media and widespread debate both in the courtroom and out.
However, such enormous hype and controversy has led to the mistrust of such
technology as a serious distributed systems platform for future computing,
but in fact in reality, there is significant substance as we shall see.

In parallel, there has been an overwhelming interest in Grid computing,
which is attempting to build the infrastructure to enable on-demand comput-
ing in a similar fashion to the way we access other utilities now, e.g., electricity.
Further, the introduction of the Open Grid Services Architecture (OGSA) [21]
has aligned this vision with the technological machine-to-machine capabilities
of Web services (see Chapter 3). This convergence has gained a significant in-
put from both commercial and non-commercial organizations ([27] and [28])
and has a firm grounding in standardized Web technologies, which could per-
haps even lead to the kind of ubiquitous uptake necessary for such a infras-
tructure to be globally deployed.

Although the underlying philosophies of Grid computing and P2P are
different, they both are attempting to solve the same problem, that is, to
create a virtual overlay [23] over the existing Internet to enable collaboration
and sharing of resources [24]. However, in implementation, the approaches
differ greatly. Whilst Grid computing connects virtual organizations [32] that
can cooperate in a collaborative fashion, P2P connects individual users using
highly transient devices and computers living at the edges of the Internet [46]
(i.e., behind NAT, firewalls etc).

The name “Peers in a Client/Server World” describes the transitionary
evolution from the widespread client/server based Internet, dominant over
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the past decade, back to the roots of the Internet where every peer had equal
status. Inevitably, both history and practicality will influence the next gen-
eration Internet as we attempt to migrate from the technical maturity and
robustness of the current Internet to its future vision. Therefore, as we move
forward, we must build upon the current infrastructure to address key issues
of widespread availability and deployment.

In this book, the key influential technologies are addressed that will help
to shape the next-generation Internet. P2P and distributed-object based tech-
nologies, through to the promised pervasive deployment of Grid computing
combined with Web services will be needed in order to address the funda-
mental issues of creating a scalable ubiquitous next-generation computing
infrastructure. Specifically, a comprehensive overview of current distributed-
systems technologies is given, covering P2P environments (Chapters 2,6,7,
9,10,12), security techniques (Chapter 8), distributed-object systems (Chap-
ters 5 and 11), Grid computing (Chapter 4) and both stateless (Chapters 3
and 13) and stateful Web services (Chapter 14).

1.1 Introduction to Distributed Systems

A distributed system can be defined as follows:

“A distributed system is a collection of independent computers that appears
to its users as a single coherent system” [1]

There are two aspects to this: hardware and software. The hardware ma-
chines must be autonomous and the software must be organized in such a way
as to make the users think that they are dealing with a single system. Expand-
ing on these fundamentals, distributed systems typically have the following
characteristics; they should:

• be capable of dealing with heterogeneous devices, i.e., various vendors,
software stacks and operating systems should be able to interoperate

• be easy to expand and scale
• be permanently available (even though parts of it may not be)
• hide communication from the users.

In order for a distributed system to support a collection of heterogeneous
computers and networks while offering a single system view, the software stack
is often divided into two layers. At the higher layers, there are applications
(and users) and at the lower layer there is middleware, which interacts with
the underlying networks and computer systems to give applications and users
the transparency they need (see Fig. 1.1).

Middleware abstracts the underlying mechanisms and protocols from the
application developer and provides a collection of high-level capabilities to
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Fig. 1.1. The role of middleware in a distributed system; it hides the underlying
infrastructure away from the application and user level.

make things far easier for programmers to develop and deploy their applica-
tions. For example, within the middleware layer, there maybe simple abstract
communication calls that do not specify which underlying mechanisms they
actually use, e.g., TCP/IP, UDP, Bluetooth etc. Such concrete deployment
bindings are often decided at run time through configuration files or dynami-
cally, thereby being dependent on the particular deployment environment.

Middleware therefore provides the virtual overlay across the distributed
resources to enable transparent deployment across the underlying infrastruc-
tures. In this book, we will take a look at a number of different approaches in
designing the middleware abstraction layer by identifying the kinds of capa-
bilities that are exposed by the various types.

1.2 Some Terminology

Often, a number of terms are used to define a device or capability on a dis-
tributed network, e.g., node, resource, peer, agent, service, server etc. In this
section, common definitions are given which are used consistently throughout
this book. The definitions presented here do represent a compromise however,
because often certain distributed entities are not identified in all systems in
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the same way. Therefore, wherever appropriate, the terminology provided here
is given within the context of the system they described within. The terms
are defined as follows:

• Resource: any hardware or software entity being represented or shared
on a distributed network. For example, a resource could be any of the fol-
lowing: a computer; a file storage system; a file; a communication channel;
a service, i.e., algorithm/function call; and so on

• Node: a generic term used to represent any device on a distributed net-
work. A node that performs one (or more) capabilities is often exposed as
a service

• Client: is a consumer of information, e.g., a Web browser
• Server: is a provider of information, e.g., a Web server or a peer offering

a file-sharing service
• Service: is “a network-enabled entity that provides some capability” [21];

e.g., a Web server provides a remote HTTP file-retrieval service. A single
device can expose several capabilities as individual services

• Peer: a peer is when a device acts as both a consumer and provider of
information.
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Fig. 1.2. An overview of the terms used to describe distributed resources.
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Figure 1.2 organizes these terms by associating relationships between the
various terminologies. Here, we can see that any device is a entity on the
network. Devices can also be referred to in many different ways, e.g., a node,
computer, PDA, peer etc. Each device can run any number of clients, servers,
services or peers. A peer is a special kind of node, which acts as both a client
and a server.

There is often confusion about the term resource. The easiest way to think
of a resource is any capability that is shared on a distributed network. Sharing
resources can be exposed in a number of ways and can also be used to represent
a number of physical or virtual entities. For example, you can share: files (so
a file is a resource), CPU cycles, storage capabilities (i.e., a file system), a
service, e.g., a Web server or Web service, and so on. Therefore, everything in
1.2 is a resource except a client, who does not share.

A service is a software entity that can be used to represent resources, and
therefore capabilities, on a network. There are numerous examples, e.g., Web
servers, Web services, Jini services, Jxta peers providing a service, and so
forth and so on. In simple terms, services can be thought of as the network
counterparts of local function calls. Services receive a request (just like the
arguments to a function call) and (optionally) return a response (as do local
function calls ). To illustrate this analogy, consider the functionality of a
standard HTTP Web server: it receives a request for an HTTP file and returns
the contents of that file, if found. If this was implemented as a local function
call in Java, it would look something like this:

String getWebPage(String httpfile)

This simple function call takes a file-name argument (including its direc-
tory, e.g., /mydir/myfilename.html) and it returns the contents of that local
file within a Java String object. This is basically what a Web server does. How-
ever, within the Web server scenario, the user would provide an HTTP address
(e.g., http://www.google.com/index.html) and this would be converted into a
remote request to the specified Web server (e.g., http://www.google.com) with
the requested file (index.html). The entire process would involve the use of the
DNS (Domain Name Service) but the client (e.g., the Web browser) performs
the same operation as our simple local reader but renders the information in
a specific way for the user, i.e., using HTML.

1.3 Centralized and Decentralized Systems

In this section, the middleware and systems outlined in this book are classi-
fied onto a taxonomy according to a scale ranging between centralized and
decentralized. The distributed architectures are divided into categories that
define an axis on the comparison space. On one side of this spectrum, we have
centralized systems, e.g., typical client/server based systems. and on the other
side, we have decentralized systems, often classified as P2P. In the centre is a
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mix of the two extremes in the form of hybrid systems, e.g., brokered, where
a system may broker the functionality or communication request to another
service. This taxonomy sets the scene for the specifics of each system which
will be outlined in the chapters to follow and serves as a simple look-up table
for determining a system’s high-level behaviour.

The boundaries are not clean-cut however and there are a number of fac-
tors that can determine the centralized nature of a system. Even systems
that are considered fully decentralized can, in practice, employ some degrees
of centralization, albeit often in a self-organizing fashion [2]. Typically, de-
centralized systems adopt immense redundancy, both in the discovering of
information and content, by dynamically repeating information across many
other peers on the network.

Broadly speaking, there are three main areas that determine whether a
system is centralized or decentralized:

1. Resource Discovery
2. Resource Availability
3. Resource Communication

One important consideration to bear in mind as we talk about the degree
of centralization of systems is that of scalability. When we say a resource is
centralized, we do not mean to imply that there is only one server serving the
information, rather, we mean that there are a fixed number of servers (possibly
one) providing the information which does not scale proportionately with the
size of the network. Obviously, there are many levels of granularities here
and hence the adoption of a sliding scale, illustrating the various levels on a
resource-organization continuum.

1.3.1 Resource Discovery

Within any distributed system, there needs to be a mechanism for discovering
the resources. This process is referred to as discovery and a service which
supplies this information is called a discovery service (e.g., DNS, Jini Lookup,
Jxta Rendezvous, JNDI, UDDI etc.). There are a number of mechanisms for
discovering distributed resources, which are often highly dependent on the
type of application or middleware. For example, resource discovery can be
organized centrally, e.g., DNS, or decentrally, e.g., Gnutella.

Discovery is typically a two-stage process. First, the discovery service needs
to be located; then the relevant information is retrieved. The mechanism of
how the information is retrieved can be highly decentralized (as in the lower
layers of DNS), even though access to the discovery service is centralized.
Here, we are concerned about the discovery mechanism as a whole. Therefore,
a system that has centralized access to a decentralized search is factored by
its lowest common denominator, i.e., the centralized access. There are two
examples given below that illustrate this.
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As our first example, let’s consider DNS which is used to discover an
Internet resource. DNS works in much the same way as a telephone book.
You give a DNS an Internet site name (e.g., www.cs.cf.ac.uk) and the DNS
server returns to you the IP address (e.g., 131.251.49.190) for locating this
site. In the same way as you keep a list of name/number pairs on your mobile
phone, DNS keeps a list of name/IP number pairs.

DNS is not centralized in structure but the access to the discovery service
certainly is because there are generally only a couple of specified hosts that act
as DNS servers. Typically, users specify a small number of DNS servers (e.g.,
one or two), which are narrow relative to the number of services available to it.
If these servers go down then access to DNS information is disabled. However,
behind this small gateway of hosts, the storage of DNS information is mas-
sively hierarchical, employing an efficient decentralized look-up mechanism
that is spread amongst many hosts.

Another illustration here is the Web site Google. Google is certainly a cen-
tralized Web server in the sense that there is only one Google machine (at a
specific time) that binds to the address http://www.google.com. When we ask
DNS to provide the Google address, it returns the IP Address 168.127.47.8,
which allows you to contact the main Google server directly. However, Google
is a Web search engine that is used by millions of people daily and conse-
quently it stores a massive number of entries (around 1.6 billion). To access
this information, it relies on a database that uses a parallel cluster of 10,000
Linux machines to provide the service (at the time of writing). Therefore, the
access and storage of this information, from a user’s perspective, is central-
ized but from a search or computational perspective, it is certainly distributed
across many machines.

1.3.2 Resource Availability

Another important factor is the availability of resources. Again, Web servers
fall into the centralized category here because there is only one IP address
that hosts a particular site. If that machine goes down then the Web site is
unavailable. Of course, machines could be made fault tolerant by replicat-
ing the web site and employing some internal switching mechanisms but the
availability of the IP address remains the same.

Other systems, however, use a more decentralized approach by offering
many duplicate services that can perform the same functionality. Resource
availability is tied in closely to resource discovery. There are many examples
here but to illustrate various availability levels, let’s briefly consider the shar-
ing of files on the internet through the use of three approaches, which are
illustrated in Fig. 1.3:

1. MP3.com
2. Napster
3. Gnutella.
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Fig. 1.3. A comparison of service availability from centralized, brokered and decen-
tralized systems.

MP3.com contains a number of MP3 files that are stored locally at (or
behind) the Web site. If the Web site or the hard disk(s) containing the
database goes down, then users have no access to the content.

Napster, on the other hand, stores the MP3 files on the actual users’
machines and napster.com is used as a massive index (or meeting place) for
connecting users. Users connect to Napster to search for the files they desire
and thereafter connect to users directly to download the file. Therefore, each
MP3 file is distributed across a number of servers making it more reliable
against failure.

However, as the search is centralized, it is dependent on the availability
of the main Web site; i.e., if the Web site goes down then access to the MP3
files would also be lost. Interestingly, the difference between MP3.com and
Napster is smaller than you may think: one centralizes the files, whilst the
other centralizes the addresses of the files. Either is susceptible to failure if
the Web site goes down. The difference in Napster’s case is that, if the Web
site goes down then current users can still finish downloading the current files
they have discovered since the communication is decentralized from the main
search engine. Therefore, if a user has already located the file and initiated
the download process, then the availability of the Web site does not matter
and they can quite happily carry on using the service (but not search for more
files).
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Thirdly, let’s consider Gnutella. Gnutella does not have a centralized
search facility nor a central storage facility for the files. Each user in the
network runs a servent (a client and a server), which allows him/her to act as
both a provider and consumer of information (as in Napster) but furthermore
acts as a search facility also. Servents search for other files by contacting other
servents they are connected to, and these servents connect to the servents they
are connected to and so on. Therefore, if any of the servents are unavailable,
users can almost certainly still reach the file they require (assuming it is avail-
able at all).

Here, therefore, it is important to insert redundancy in both the discovery
and availability of the resources for a system to be truly robust against single-
point failure. Often, when there are a number of duplicated resources available
but the discovery of such resources is centralized, we call this a brokered
system; i.e., the discovery service brokers the request to another service. Some
examples of brokered systems include Napster, Jini, ICQ and Corba

1.3.3 Resource Communication

The last factor is that of resource communication. There are two methods of
communication between resources of a distributed system:

1. Brokered Communication: where the communication is always passed
through a central server and therefore a resource does not have to reference
the other resource directly

2. Point-to-Point (or Peer-to-Peer) Communication: this involves a
direct connection (although this connection may be multi-hop) between
the sender and the receiver. In this case, the sender is aware of the re-
ceiver’s location.

Both forms of communication have their implications on the centralized
nature of the systems. In the first case for brokered communication, there is
always a central server which passes the information between one resource and
another (i.e., centralized). Further, it is almost certainly the case that such sys-
tems are centralized from the resource discovery and availability standpoints
also, since this level of communication implies fundamental central organiza-
tion. Some examples here are J2EE, JMS chat and many publish/subscribe
systems.

Second, there are many systems that use point-to-point connections, e.g.,
Napster and Gnutella but also, so do Web servers! Therefore, this category is
split horizontally across the scale and the significance here is in the central-
ization of the communication with respect to the types of connections.

For example, in the Web server example, communication always originates
from the user. There exists a many-to-one relationship between users and
the Web server and therefore this is considered centralized communication.
This is illustrated in Fig. 1.4, where an obvious centralized communication
pattern is seen for the Web server case.
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Equal Peers: communication is supposed

to be even; i.e., each provider is also a

server of information and each node has

an equal number of connections

Web

Server

Many-to-one relationship between

users and the Web server and

therefore this can be considered
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Fig. 1.4. The centralization of communication: a truly decentralized system would
have even connections across hosts, rather than a many-to-one type of connectivity.

However, in more decentralized systems, such as Napster and Gnutella,
communication is more evenly distributed across the resources; i.e., each
provider of information is also a server of information, and therefore the con-
nectivity leans more towards a one-to-one connectivity rather than many-
to-one. This equal distribution across the resource (known as equal peers)
decentralizes communication across the entire system. However, in practice
this is almost never the case because of the behavioural patterns depicted by
users of such networks; e.g., some users do not share files and others share
many (see Section 7.7).

1.4 Examples of Distributed Applications

In this section, the criteria defining the taxonomy are applied to several well-
known examples of existing distributed applications and middleware. The ex-
amples given here serve as a point of reference for each chapter that describes
the particular application or middleware in more detail.

1.4.1 A Web Server: Centralized

A good example of a centralized system is a Web server. Clients (i.e., users) use
their Web browser to navigate Web pages on one or more Web sites. Each Web
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Fig. 1.5. Taxonomy for a Web server.

site is static to the particular domain with which it is associated. A Web server
therefore is centralized in every sense. It has centralized discovery (through
DNS), it is either available or not and all communication is centralized to the
particular Web server being contacted. Communication is point to point but
there is a many-to-one relationship between the users of this service and the
server itself.

The circles in Fig. 1.5 show the position where a Web server lies on the cen-
tralized/decentralized scale for the three categories listed: resource discovery,
resource availability and resource communication. The scale at the right-hand
side of this graph indicates the broad granularity of our measurements (finer
levels would not really change the outcome much anyway) but somewhere
around the mid-point would denote the brokered case.

With brokering, typically one service brokers the request to another. DNS
does not fall into this category since it has no intrinsic functionality or se-
mantics itself. Web forwarding is a kind of brokering in this sense but this
is a one-to-one forwarding. Typically, brokering involves making a decision
about where to broker the request and therefore typically, there are many ser-
vices offering the same functionality from which to choose. Communication
can also be brokered by the server acting as a coordinator between the sender
and receiver.
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1.4.2 SETI@Home: Centralized
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Fig. 1.6. Taxonomy for SETI@Home.

SETI@Home (Search for Extraterrestrial Intelligence) [3] is a project that
analyses data from a radio telescope to search for signs of extraterrestrial life.
Each user who takes part in this project downloads a data set and executes
some signal-processing tasks. The actual program is implemented as a screen
saver and therefore only operates when the computer is idle. The SETI@Home
project has used over a billion years of CPU time at the time of writing.

Here, the entire system is run from the SETI@Home Web site. Users down-
load the code and also the data when they are available to process. Therefore,
the discovery is centralized (DNS) and the communication is centralized to the
Web site. Resource availability is also centralized because without the avail-
ability of the Web site, the many SETI nodes cannot do anything since they
need this server to download the next chunk of data. This taxonomy also ap-
plies to BOINC [38], which is the new open source release of the SETI@Home
infrastructure. SETI is discussed in more detail in Chapter 2.
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Fig. 1.7. Taxonomy for Napster.

1.4.3 Napster: Brokered

A good example of a brokered system is Napster [4]. Napster stores informa-
tion about the location of peers and music files in a centralized way but then
lets the peers communicate directly when they transfer files.

Here therefore, the discovery and availability are centralized through the
Napster Web site but the communication between the peers is decentralized.
However, the availability of the resources (i.e., files) is less centralized to a
degree because users can still download the file even if the Napster server
goes down. However, users cannot search for new resources when the Web site
is unavailable and therefore limited in this respect. Napster is described in
more detail in Chapter 2.

1.4.4 Gnutella: Decentralized

A popular example of a decentralized system is Gnutella [6] where discovery,
availability and communication are completely decentralized over the network.
Gnutella is discussed in detail in Chapter 6.

In theory Gnutella is completely decentralized but in practice is this really
true? Decentralized networks are inherently self-organizing and so it is not
only possible but indeed very likely that strong servers of information (the
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Fig. 1.8. Taxonomy for Gnutella.

so-called super-peers in Gnutella) could easily turn a decentralized network
into a semi-centralized one when peers contain an uneven amount of content.
Whether this is achieved by behavioural patterns or by artificially creating
a centralized-decentralized structure, the resulting network is no longer com-
pletely decentralized. This is discussed in detail in Chapter 7.

It is no coincidence, for example, that this evolution of hybrid decentral-
ized and centralized systems echoes the evolution of other types of systems
such as Usenet [62]. The history of Usenet shows us that peer-to-peer (de-
centralization) and client/server (centralization) are not mutually exclusive.
Usenet was originally peer-to-peer. Sites connected via a modem and agreed
to exchange information (news and mail) with each other (UUCP). However,
over time, it became obvious that certain sites had better servers than others
and these sites went on to form the Usenet backbone. Today, the volume of
Usenet is enormous and servers on the backbone can elect how much infor-
mation they want to serve and they get added to the Usenet network in a
decentralized fashion. Even the addition of new newsgroups is not centralized
as users have to vote for a newsgroup before it gets initiated.
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1.5 Examples of Middleware

1.5.1 J2EE and JMS: Centralized
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Fig. 1.9. Taxonomy for JMS

The Java development kit enterprise edition J2EE [13] is an example of
a centrally controlled system. Here, one Web site is the manager of all inter-
action between clients. Clients in the Java Messaging System (JMS) do not
know the whereabouts of other clients because this knowledge is stored within
the central manger on the J2EE server. The entire system is based around a
Web site and therefore the discovery is central.

JMS is used as a publish/subscribe mechanism within the J2EE environ-
ment (amongst other things) and is quite typical of other messaging systems,
e.g., ICQ where messages are brokered through a central server in order to
get to their destination. Therefore, the communication is brokered through
the Web site. Further, there is only one copy of the Web site (typically these
are quite complicated to set up) and therefore the availability is centralized
also.
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Fig. 1.10. Taxonomy for Jini.

1.5.2 Jini: Brokered

Jini [78] allows Java objects to become network-enabled services that can be
distributed in a network ‘plug and play’ manner. In a running Jini system,
there are three main players. There is a service, such as a printer, a super-
computer running a software service etc. There is a client which would like
to make use of this service. Third, there is a lookup service (service locator)
which acts as a broker/trader/locator between services and clients. Jini is
discussed in detail in Chapters 5 and 11.

Jini is another example of a brokered system. Jini clients find out about
services by using the lookup server. The lookup server brokers the request
to a matching service and thereafter the communication takes place directly
between the client and services. Therefore, the availability is centralized in
the sense that it is dependent on the Jini lookup service but on the other
hand, once a client discovers a service it wishes to use, the client and service
can carry on communicating without the availability of the lookup service.
Therefore, as in previous brokered systems, the availability is better than a
strict centralized system.
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Fig. 1.11. Taxonomy for Web services.

1.5.3 Web Services: Brokered

At the core of the Web services model is the notion of a service, which can
be described, discovered and invoked using standard XML technologies such
as SOAP, WSDL and UDDI. Conventionally, Web services are described by a
WSDL document, advertised and discovered using a UDDI server and invoked
with a message conforming to the SOAP specification.

Web services therefore use the same brokered model as other systems, such
as Napster, Jini or CORBA and therefore have a similar taxonomy to those
systems. However, Web services differentiates itself by being based completely
on open standards that has gained enormous support from thousands of com-
panies and have been adopted by several communities, including the GGF.
Web services are discussed in detail in Chapters 3, 13 and 14.

1.5.4 Jxta: Decentralized

Project Jxta [15] defines a set of protocols that can be used to construct
peer-to-peer systems using any of the centralized, brokered and decentralized
approaches but its main aim is to facilitate the creation of decentralized sys-
tems. Jxta’s goal is to develop basic building blocks and services to enable
P2P applications for interested groups of peers. Jxta will be discussed, both
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Fig. 1.12. Taxonomy for JXTA.

conceptually and from a programmers perspective in Chapters 10 and 12,
respectively.

Jxta can support any level of centralization/decentralization but its main
focus (and hence power) is to facilitate the development of decentralized appli-
cations. Therefore, in this context, Jxta peers can be located in a decentralized
fashion; they have much redundancy in their availability and their communi-
cation is point to point and therefore no central control authority is needed
for their operation.

1.6 Conclusion

In this chapter, the critical components of any distributed system were
outlined concentrating particularly on the role of middleware. Distributed-
systems terminology was introduced, along with notion of a service, which
will be used frequently within this book. We then discussed a taxonomy for
distributed systems based on a scale ranging from centralized to decentral-
ized, which factored in: resource discovery, resource availability and resource
communication. Several well-known distributed applications and middleware
have been classified using this taxonomy, which will serve as a placeholder
and give context to the distributed systems described in the rest of this book.
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In this book, there are four main themes: distributed environments, mid-
dleware and applications, middleware deployment and future trends. We begin
by setting the scene and introducing three diverse, yet somewhat complimen-
tary technologies, that have evolved over the past several years. These are
peer to peer, Web services and Grid computing. Each of these technological
areas addresses specific issues within the distributed system spectrum and,
as we look ahead, it is highly likely that each will play an important role in
contributing to our future distributed-systems infrastructure.
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Peer-2-Peer Systems

At the time of writing, there are one and a half billion devices worldwide (e.g.,
PCs, phone, PDAs, etc.), a figure which is rising rapidly. Surveys have stated
that Internet users surpassed 530 million in 2001 and predictions indicate that
this will double to 1.12 billion by year-end 2005 [175].

The computer hardware industry has also been characterised by expo-
nential production volumes. Gordon Moore, the co-founder of Intel, in his
famous observation in 1965 [140] (made just four years after the first planar
integrated circuit was discovered), predicted that the number of transistors
on integrated circuits would double every few years. Indeed this prediction,
thereafter called Moore’s law, remains true up until today and Intel predicts
that this will remain true at least until the end of this decade [141].

Such acceleration in development has been made possible by the mas-
sive investment by companies who deal with comparatively short product life
cycles. Each user now in this massive network has the CPU capability of
more than 100 times that of an early 1990s supercomputer and surprisingly,
GartnerGroup research reveals that over 95% of today’s PC power is wasted.
The potential of such a distributed computing resource has been in some ways
demonstrated by the SETI@Home project [3], having used over a million years
of CPU time at the time of writing.

In this chapter, peer-to-peer computing, a possible paradigm for making
use of such devices, is discussed. An historical perspective is given, followed
by a definition, taxonomy and justification for P2P computing. A background
into the P2P environment is given followed by examples of several P2P appli-
cations that operate within such an environment.

2.1 What is Peer to Peer?

This section gives a brief background and history of the term “peer to peer”
and describes its definition in the current context. Examples of P2P tech-
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nologies are given followed by categorizations of their behaviour within the
taxonomy described in the first chapter.

2.1.1 Historical Peer to Peer

Peer to peer was originally used to describe the communication of two peers
and is analogous to a telephone conversation. A phone conversation involves
two people (peers) of equal status, communication between a point-to-point
connection. Simply, this is what P2P is, a point-to-point connection between
two equal participants.

The Internet started as a peer-to-peer system. The goal of the original
ARPANET was to share computing resources around the USA. Its challenge
was to connect a set of distributed resources, using different network con-
nectivity, within one common network architecture. The first hosts on the
ARPANET were several US universities, e.g., the University College of Los
Angeles, Santa Barbara, SRI and University of Utah. These were already in-
dependent computing sites with equal status and the ARPANET connected
them as such, not in a master/slave or client/server relationship but rather
as equal computing peers.

From the late 1960s until 1994, the Internet had one model of connectivity.
Machines were assumed to be always switched on, always connected, and
assigned permanent IP addresses. The original DNS system was designed for
this environment, where a change in IP address was assumed to be abnormal
and rare, and could take days to propagate through the system.

However, with the invention of Mosaic, another model began to emerge
in the form of users connecting to the Internet from dial-up modems. This
created a second class of connectivity because PCs would enter and leave
the network frequently and unpredictably. Further, because ISPs began to
run out of IP addresses, they began to assign IP addresses dynamically for
each session, giving each PC a different, possibly masked, IP address. This
transient nature and instability prevented PCs from being assigned permanent
DNS entries, and therefore prevented most PC users from hosting any data
or network-facing applications locally.

For a few years, treating PCs as clients worked well. Over time though,
as hardware and software improved, the unused resources that existed behind
this veil of second-class connectivity started to look like something worth get-
ting at. Given the vast array of available processors mentioned earlier, the
software community is starting to take P2P applications very seriously. Most
importantly, P2P research is concerned in addressing some of the main difficul-
ties of current distributed computing: scalability, reliability, interoperability.

2.1.2 Binding of Peers

Within today’s Internet, we rely on fixed IP addresses. When a user types
an address into his/her Web browser (such as http://www.google.com/), the
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http://www.google.com/

DNS

168.127.47.8

Fig. 2.1. The process whereby an Internet address is converted into the IP address
for locating a Web page on the Internet.

Web server address is translated into the IP address (e.g., 168.127.47.8) by a
domain name server (DNS). The Internet protocol (IP) then makes a rout-
ing decision based on the IP Address. If DNS is unavailable then typing
http://168.127.47.8/ into a browser would be equivalent since the Web page
is permanently bound to the IP address.

This is known as static or early binding. Figure 2.1 illustrates this pro-
cess graphically. Early bindings form a simple architecture very similar to an
address book on a mobile phone; e.g., the person’s name is statically bound
to his/her telephone number. This works in practice because typically people
have long-term (early) bindings with their phone numbers and Web sites have
long-term bindings with their IP addresses.

However, if a Web site changed its IP address several times a day then
this type of binding starts to become impractical. Within P2P networks this
is the norm. Often devices do not have a fixed address as they are hidden
behind Network Address Translation (NAT) systems and therefore need a
late binding of their addresses with their network identifier.

2.1.3 Modern Definition of Peer to Peer

With the emergence of new technologies in the late 1990s a new definition for
peer to peer has begun to emerge, as follows:
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P2P is a class of applications that takes advantage of resources e.g.
storage, cycles, content, human presence, available at the edges of the
Internet (Shirky [46]).

Computers/devices “at the edges of the Internet” are those operating within
transient and often hostile environments. Devices within this environment: can
come and go frequently; can be hidden behind a firewall or operate outside of
DNS, e.g., by NAT (see next section); and often have to deal with differing
transport protocols, devices and operating systems (see Fig. 2.2 below). Often
the number of computers in a P2P network is enormous consisting of millions
of interconnecting peers.

This modern definition rather defines the P2P environment of devices and
resources rather than previous definitions that focused on the servent method-
ology and decentralized nature of systems like Gnutella [6]. For example, in
Gnutella, there are two key differences compared to client/server based sys-
tems:

• A peer can act as both a client and a server (they call these servents i.e.
server and client in Gnutella.)

• The network is completely decentralized and has no central point of con-
trol. Peers in a Gnutella network are typically connected to three or four
other nodes and to search the network a query is broadcast throughout
the network.

Certainly, within P2P systems, peers exist as defined in Gnutella. How-
ever, P2P networks do not have to be completely decentralized. This is
evident in modern Gnutella implementations [51], which employ a central-
ized/decentralized approach in order to be able to scale the network and in-
crease efficiency of search. Such networks are implemented using super-peers
that cache file locations so that peers only have to search a small fraction of
the network in order to satisfy their search requests.

Therefore, Shirky’s definition here is more appropriate to describe a new
class of applications that are designed to work within this highly transient
environment (see also section 2.2), something previously unattainable.

Systems like Gnutella are now often referred to as True P2P (see Section
2.1.5) because of their pure decentralized approach, where everyone partici-
pates equally in the network. However, this ideal can never really be realised
by a P2P system simply because certainly not all peers are equal within actual
P2P networks, which has been proven by several empirical studies [69], [37]
and [67]. See the next two chapters for a detailed overview of the evolving
network topologies employed by recent decentralized file-sharing networks.

Other authors have noted the same. From [24], the authors state that
“they prefer this definition to the alternative ‘decentralized, self-organizing
distributed systems, in which all or most communication is symmetric,’ be-
cause it encompasses large-scale deployed (albeit centralized) P2P systems
(such as Napster and SETI@Home) where much experience has been gained”.
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Fig. 2.2. A P2P environment: devices are connected behind NATs and firewalls;
they run on different platforms, potentially using different programming languages,
e.g. Jxta [15].

Examples of recent P2P technologies include:

• File sharing/storage programs, e.g., Gnutella [6], Napster [4], Limewire
[51], KaZaA [52], Freenet [58] and Popular Power [53], some of which have
taken the spotlight by providing a way of sharing any type of digital file,
of which, users typically provide audio and video files

• CPU resource-sharing systems, e.g., SETI@Home [3], United Devices[54],
Entropia [55] and XtremWeb [191]

• Instant messaging (e.g., ICQ [56] and Jabber [5])
• Conferencing applications e.g.,netmeeting [57] for white-boarding, voice

over IP.

What makes these similar is that they are all leveraging previously unused
resources by tolerating and even working with the variable connectivity that
many devices connected to these networks exhibit.

2.1.4 Social Impacts of P2P

The legal connotations and social impacts of P2P are ongoing. No doubt, it
has opened the eyes and imaginations of people from numerous disciplines to



28 2 Peer-2-Peer Systems

the massive sharing of resources across the Internet. Even within the context
of the sharing of copyrighted material, there are compulsive arguments for and
against the use of such technologies. There are a number of articles and books
written on the subject that support the concept of P2P and those that give
legal context for it. For example, on the Open Democracy Web site, there are
a number of articles that give a social context for P2P, both from a cultural
perspective and a legal one. In this section, a very brief summary of some of
the points raised is given.

Vaidhyanathan [178], in his five-part article on the new information ecosys-
tem, paints a picturesque account of a deep cultural change that is taking
place through the introduction of P2P technologies. He argues that “what we
call P2P communicative networks actually reflect and amplify - revise and
extend - an old ideology or cultural habit. Electronic peer-to-peer systems
like Gnutella merely simulates other, more familiar forms of unmediated, un-
censorable, irresponsible, troublesome speech; for example, anti-royal gossip
before the French revolution, trading cassette tapes among youth subcultures
as punk or rap, or the illicit Islamist cassette tapes through the streets and
bazaars of Cairo.”

He argues against the current clampdown strategy that is being employed
by companies and governments. Such a strategy involves radically redesigning
the communication technologies so that information can be monitored more
closely. These restrictions would destroy the current openness of the current
Internet and could bring about a new type of Internet which, he says, would
“not be open and customisable. Content - and thus culture - would not be
adaptable and malleable. And what small measures of privacy these networks
now afford would evaporate”.

Rainsford [179] uses the term “information feudalism”, which was taken
from an analogy given by Peter Drahos [181]. Drahos suggests that

The current push for control over intellectual property rights has bred
a situation analogous to the feudal agricultural system in the medieval
period. In effect, songwriters and scientists work for corporate feudal
lords, licensing their own inventions in exchange for a living and the
right to ‘till the lands’ of the information society.

Rainsford quotes a number of authors who believe that the struggle that
we are experiencing has deep underlying roots in cultural transformations,
which will inevitably bring about a change in the decaying business models
of today. Rainsford also notes that “the links asserted between p2p systems
and terrorism, or the funding of terrorism” are “a concept which is laughably
ironic as p2p by its very nature is a non-profit system”.

Rimmer [180] gives a legal case for the argument and argues that “if claims
by peer-to-peer distributors that they are supporting free speech and con-
tributing to knowledge want to find a sympathetic ear in the courtroom, then
they have to mean it”. He discusses the current use of P2P and argues that
they have not lived up to their revolutionary promise, being used mostly for



2.1 What is Peer to Peer? 29

circulating copyrighted media around the world. He lists several cases which
have been brought against companies, which have resulted in infringements,
and some that have not.

Rimmer states that P2P networks are “vulnerable to legal actions for
copyright infringements because they have facilitated the dissemination of
copyright media for profit and gain.” He concludes that “the courts would
be happy to foster such technology if it promoted the freedom of speech, the
mixing of cultures, and the progress of science”.

For further reading, see the articles listed or the Open Democracy Web site
[177], which hosts a series of articles in response to these comments. Similar
articles appear on other Web sites, such as OpenP2P [65].

2.1.5 True Peer to Peer?

Within P2P, there are three categories of systems (as outlined in Chapter 1):

• Centralized systems: where every peer connects to a server which co-
ordinates and manages communication. Some examples here include the
CPU sharing applications, e.g., SETI@Home

• Brokered systems: where peers connect to a server in order to discover
other peers, but then manage the communication themselves (e.g., Nap-
ster). This is also called Brokered P2P.

• Decentralized systems: where peers run independently without the
need for centralized services. Here, the discovery is decentralized and the
communication takes place between the peers. Peers do not need a known
centralized service for them to operate, e.g., Gnutella, Freenet

Most Internet services are distributed using the traditional client/server
(centralized) architecture. In this architecture, clients connect to a server using
a specific communications protocol (e.g., TCP) to obtain access to a specific
resource. Most of the processing involved in delivering a service usually occurs
on the server, leaving the client relatively unburdened. Most popular Internet
applications, including the World Wide Web, FTP, telnet, and email, use this
service-delivery model. Unfortunately, this architecture has a major drawback;
that is, as the number of clients increases (and therefore load and bandwidth)
the server becomes a bottleneck and can eventually result in the server not
being able to handle any additional clients.

The advantage of the client/server model is that it requires less compu-
tational power on the client side. However, this has been somewhat circum-
vented due to ever-increasing CPU power and therefore most desktop PCs are
ludicrously overpowered to operate as simple clients, e.g., for browsing and
email.

P2P, on the other hand, has the capability of serving resources with high
availability at a much lower cost, while maximizing the use of resources from
every peer connected to the P2P network. Whereas client/server solutions rely
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on costly bandwidth, equipment, and location to maintain a robust solution,
P2P can offer a similar level of robustness by spreading network and resource
demands across the network. Note though that some middleware architectures
used to program such systems are often capable of operating in one or more
of these modes.

Further, the more decentralized the system, the better the fault tolerance,
since the services are spread across more resources. Therefore, at the far side
of the scale, you have true P2P systems, which employ a completely decen-
tralized structure, both in look-up and in communication. Hong [62] gives a
useful description for communication within P2P systems. He defines P2P
systems as being a class of distributed systems that are biased to more of
a decentralized approach, where there is no global notion of centralization.
He argues that such systems are primarily concerned with smaller distributed
levels of centralization with respect to communication.

When designing a P2P system therefore, there is a trade-off between in-
serting the correct amount of decentralization for the network to be fault
tolerant against failure but centralized enough to scale to large number of
participants. These issues are discussed in detail in Chapter 7.

2.1.6 Why Peer-to-Peer?

So why is P2P important. What’s new?

Although the term P2P, in many peoples’ minds, is linked with distribut-
ing copyrighted material illegally, it has in fact much more to offer. P2P
file-sharing applications have addressed a number of important issues when
dealing with large-scale connectivity of transient devices. There are a number
of practical real-world applications for such a technology, both on the Internet
[54] [3] and on wireless networks, e.g., for mobile sensors applications [176],
and in many different kinds of scientific and social experiments.

P2P could provide more useful and robust solutions over current technolo-
gies in many different situations. For example, current search engine solutions
centralize the knowledge and their resources. This is an inherent limitation.
Google, for example, relies on a central database that is updated daily by
scouring the Internet for new information. Simply due to the massive size of
this database (more than 1.6 billion entries) not every entry gets updated
every day, and as a result, information can often be out of date. Further, it is
impractical (from a cost perspective) that such solutions will be scalable for
the future Internet.

For example, even though Google, at the time of writing, runs a cluster of
10,000 machines to provide its service, it only searches a subset of available
Web pages (about 1.3 x 108) to create its database. Furthermore, the world
produces two exabytes (2 x 1018 bytes) each year but only publishes about 300
terabytes (3 x 1012 bytes) i.e. for every megabyte of information produced,
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one byte gets published. Therefore, finding useful information in real-time is
becoming increasingly difficult.

A similar service could be implemented using P2P technology. One pos-
sibility is that every person runs a personal Web server on a desktop com-
puter that has the capability to process requests for information about the
documents it manages. A user’s server could receive a query, check the local
documents and respond with a list of matching documents. Each server would
be responsible for indexing its own documents and would therefore be capable
of providing more specialized, accurate and up-to-date information.

This decentralization of indexing is much more manageable than the task
facing Google. Corporations could also provide specialized information avail-
able that current search engines cannot reach. Further, if the user’s server
disconnected from the network then the search service would also become
unavailable and therefore users searching would not receive results for un-
available resources as they do at present. This solution outlines an extreme
P2P solution, but in practice some combinational technique could prove very
effective.

2.2 The P2P Environment

This section covers the technology that makes the P2P environment so difficult
to work within. In Fig. 2.2, this environment was illustrated; that is, peers
are: extremely transient (they are continually disappearing and reappearing),
connections are often multi-hop (i.e., packets travel via several intermediaries
before they reach their destination), and peers reside in hostile environments
(i.e., they live behind NAT routing systems and firewalls).

In this section, a background is given into some of the technologies behind
P2P networks, which helps set a more realistic P2P scene. The first section
makes a brief excursion into switching technology for networks. The second
section describes a particular subset of these that contains NAT systems.
Lastly, firewalls are discussed.

2.2.1 Hubs, Switches, Bridges, Access Points and Routers

This section gives a brief overview of the various devices used to partition a
network, which gives the context for the following two sections on NAT and
firewalls often employed within a P2P network. Briefly, the critical distinction
between these devices is the level or layer at which they operate within the
International Standard Organization’s Open System Interconnect (ISO/OSI)
model, which defines seven network layers [98].

.

• Hubs: A hub is a repeater that works at the physical (lowest) layer of OSI.
A hub takes data that comes into a port and sends it to the other ports
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in the hub. It doesn’t perform any filtering or redirection of data. You
can think of a hub as a kind of Internet chat room. Everyone who joins
a particular chat is seen by everyone else. If there are too many people
trying to chat, things get bogged down.

• Switches and Bridges: These are pretty similar. Both operate at the
Data Link layer (just above Physical) and both can filter data so that
only the appropriate segment or host receives a transmission. Both filter
packets based on the physical address (i.e. Media Access Control (MAC)
address) of the sender/receiver although newer switches sometimes include
the capabilities of a router and can forward data based on IP address
(operating at the network layer), referred to as IP switches. In general,
bridges are used to extend the distance capabilities of the network while
minimizing overall traffic, and switches are used primarily for their filtering
capabilities to create multiple, smaller virtual local area networks (LANs)
out of one large LAN for easier management/administration (V-LANs).

• Routers: These work at the Network layer of OSI (above Data Link) and
operate on the IP address. Like switches and bridges, they filter by only
forwarding packets destined for remote networks thus minimizing traffic,
but are significantly more complex than any other networking device; thus
they require much more maintenance and administration. The home net-
worker typically uses a DSL or cable modem router that joins the home’s
LAN to the wide area network (WAN) of the Internet. By maintaining
configuration information in a “routing table” routers also have the abil-
ity to filter traffic, either incoming or outgoing, based on the IP addresses
of senders and receivers. Most routers allow the home networker to update
the routing table from a Web browser interface. DSL and cable modem
routers typically combine the functions of a router with those of a switch
in a single unit.

2.2.2 NAT Systems

For a computer to communicate with other computers and Web servers on
the Internet, it must have an IP address. An IP address is a unique 32-bit
number that identifies the location of your computer on a network. There
are, in theory, 232 (4,294,967,296) unique addresses but the actual number
available is much smaller (somewhere between 3.2 and 3.3 billion). This is
due to the way that the addresses are separated into classes and also because
some are set aside for multicasting, testing or other special uses.

With the explosion of the Internet and the increase in home networks
and business networks, the number of available IP addresses is simply not
enough. An obvious solution is to redesign the address format to allow for
more possible addresses. This is being developed and is called IPv6, but it
may take several years to deploy because it requires modification of the entire
infrastructure of the Internet.
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Fig. 2.3. A NAT System divides a local network from the public network and offers
local-to-public mapping of addresses. This allows the number of machines on the
Internet to increase past the physical limit. A NAT system converts local addresses
within the stub domain into one Internet address.

A network address translation system (see Fig. 2.3) allows a single device,
such as a router, to act as an agent between the Internet (public network) and
a local (private) network. This means that only a single, unique IP address
is required to represent an entire group of computers. The internal network
is usually a LAN; commonly referred to as the stub domain. A stub domain
is a LAN that uses IP addresses internally. Any internal computers that use
unregistered IP addresses must use NAT to communicate with the rest of the
world.

There are two types of NAT translation, static or dynamic, which are
illustrated in Fig. 2.4. Static NAT involves mapping an unregistered IP ad-
dress to a registered IP address on a one-to-one basis. Particularly useful
when a device needs to be accessible from outside the network (i.e., in static
NAT), the computer with the IP address of 192.168.0.0 will always translate
to 131.251.45.110 (see upper part of Fig. 2.4).

Dynamic NAT, on the other hand, maps an unregistered IP address to
a registered IP address from a group of local dynamically allocatable IP ad-
dresses, i.e., the stub domain computers will be allocated an address from a
specified range of addresses, e.g., 192.168.0.0 to 192.168.0.50, in Figure 2.4 and
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Fig. 2.4. A NAT system can be allocate dynamic address or translate from fixed
stub domain address to outside ones.

will translate these to 131.251.45.110 for the outside world. In this circum-
stance, it is easy to see why NAT systems are problematic since you could
have potentially hundreds of stub domain computers masquerading as one
external IP address.

2.2.3 Firewalls

A firewall is a system designed to prevent unauthorized access to or from a
private network. All messages entering or leaving the computer system pass
through the firewall, which examines each message and blocks those that do
not meet the specified security criteria. Specifically, firewalls are implemented
by blocking certain ports, thereby disabling certain types of services that
operate on those ports.

Some firewalls permit only email traffic, thereby protecting the network
against any attacks other than attacks against the email service. Other fire-
walls provide less strict protections, and block services that are known to be
problematic. Generally, firewalls are configured to protect against unauthen-
ticated interactive logins from the outside world. This, more than anything,
helps prevent unauthorized users from logging into machines on your network.

More elaborate firewalls block traffic from the outside to the inside, but
permit users on the inside to communicate freely with the outside. Figure 2.5
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Fig. 2.5. A firewall blocks traffic to and from specified ports, here only SSH and
Web browsing are allowed by external computers.

illustrates a scenario where both telnet and audio conferencing are blocked
from the outside world but Web browsing and SSH connections are acceptable.
However, internal users can freely open up external connections using any of
these services but, in this example, they would not be able to hear the other
participants in the audio conference because incoming audio is blocked.

A firewall therefore can essentially protect you against most types of net-
work attack. Firewalls are also important since they can provide a single
choke point where security and audit can be imposed, i.e., they can provide
an important logging and auditing function and provide summaries to the
administrator about what kinds and amount of traffic passed through it and
how many attempts there were to break into it. Within P2P applications, it is
often necessary to traverse such firewalls, for example, by rerouting the data
over the HTTP port.

2.2.4 P2P Overlay Networks

P2P implementations frequently involve the creation of overlay networks ([23])
with a structure that is completely independent of that of the underlying
network of connected devices. The purpose of overlay networks is that they
abstract the complicated connectivity of a P2P network to a higher-level pro-
grammatical view of the peers that make up the network. This is illustrated
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in Fig. 2.6 which shows the programmer’s view of the network (see top cloud
of peers) that simplifies and abstracts the network structure and underlying
transport mechanisms (see bottom part) into a collection of cooperating peers.
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Fig. 2.6. An illustration of the notion of an overlay network. Modern P2P infras-
tructures typically overlay a virtual view of the nodes on the network to abstract
the underlying mechanisms that actually connect these devices; this example was
taken from Jxta [15].

There are several different types of overlay networks. For example, within
Jxta, a virtual network overlay sits on top of the physical devices and is orga-
nized into transient or persistent relationships, which they call peer groups.
Peers in Jxta are not required to have direct point-to-point network connec-
tions and such connections are represented through the use of virtual pipes.
Virtual pipes simply define the endpoints of the connection and leave it to
the underlying mechanisms to implement the appropriate behaviour for that
environment, e.g., for TCP, a fixed point-to-point connection is created for
the pipe but for UDP pipes this is not required and therefore the pipe re-
mains connectionless. Other network overlays include the use of distributed
hashtables e.g. Chord [45] or Pastry [44].
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2.3 P2P Example Applications

2.3.1 MP3 File Sharing with Napster

Napster [4], the famous MP3 file sharing program, was launched in 1999. It
had a revolutionary impact on the Internet due to its infamous reputation for
sharing illegal MP3 files and its unique design; i.e., after the initial centralized
Napster search, clients connected to each other and exchanged data directly
from one system’s disk to another. Figure 2.7 illustrates this process.
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Fig. 2.7. The Napster scenario for providing a distributed file system for music
files.

Users first connect to the main Napster server and register themselves to
join the network. The main server obtains a list of MP3s that the user has
and adds this to the list of songs in the central database. When a user (User
A) performs a search, Napster searches the local database on the main server
and then returns the address of the peer that has a copy of the file. User A
then connects directly to the peer that has the file (User B) and downloads
the file directly from this user’s disk without any further intervention from
the host, unless communication is interrupted (because the peer has logged
off, for example).

Napster is P2P because the Napster peers bypass DNS and because once
the Napster server resolves the IP address of the PCs hosting a particular
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song, it shifts control of the file transfers to the nodes. However, Napster is
an example of brokered P2P for the same reasons.

2.3.2 Distributed Computing Using SETI@Home
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Fig. 2.8. SETI algorithm for performing distributed data analysis on radio-telescope
data.

In 1996, SETI@Home [3] was launched, which is a scientific experiment
that uses Internet-connected computers in the Search for ExtraTerrestrial
Intelligence. SETI distributes a screen saver based application to users that
uses various signal analysis algorithms to process radio-telescope data. At the
time of writing, it had signed up more than three million users (around a
half million active contributors) and had used over a million years of CPU
time. The client software (i.e., the screen saver) contacts a server to download
the data to process and then processes this until the problem is solved, then
returns the results back to the server (see Fig. 2.8). If the run does not succeed
then this data segment is assumed to be lost and therefore ignored.

There are other similar projects:

• Distributed.net [64] uses computing power to crack previously unbreakable
encrypted messages.
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• Companies such as United Devices [54] and Entropia [55] which solve a
varied number of problems for both non-profit and commercial gains. For
example, United Devices in February 2003 used their meta processor to
help the United States Department of Defence (DoD) to find a cure for
smallpox [40].

2.3.3 Instant Messaging with ICQ

One of the most popular instant messaging programs, ICQ [56], was released in
November 1996. ICQ notifies users when their friends come online and allows
them to send messages to each other. Furthermore, apart from its instant
messaging capabilities it allows users to exchange files.

icq.com

Main Server

User List:

User A

2. User A

searches ICQ

for User B

User B

1. Members

(user A and user

B) register their

details at the ICQ

web site

3. Server

informs User A of

the user B’s

location

4. User A connects

to User B to interact

& exchanges files

Fig. 2.9. ICQ scenario uses a brokered approach using a central database to store
user’s information. To the right, the current ICQ user interface is given.

ICQ is a hybrid of the decentralized and client/server architectures (see
Fig. 2.9). It uses a central server to monitor the users that are currently on line
and to notify interested parties when new users connect to the network. All
other communication between users is conducted between the users directly.
Therefore, this employs a brokered P2P architecture, similar to Napster, hav-
ing a central database of users (where Napster has files) for lookup purposes
only, with communication taking place independently of this central authority.
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2.3.4 File Sharing with Gnutella

Gnutella is a ‘true P2P’ system. It does not rely on central control for lookup,
organization and communication. The internal mechanisms of Gnutella will
be discussed in detail in Chapter 6 but briefly; the scenario is given here in
Fig. 2.10.
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Servent
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Network)

1. Use 3rd

party to

discover ANY

node on the
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Network

4.  User A downloads file

from User D directly.

Fig. 2.10. Gnutella decentralized approach. There are two aspects to discovery:
joining the network and then discovering other peers.

There are several ways of joining a Gnutella network. The one given in
Figure 2.10 uses a GnuCache as a lookup server for a list of Gnutella nodes,
but one could easily use another method; e.g., use newsgroups to get lists of
nodes, Web sites, etc. The node joins the network by connecting initially to
one Gnutella node, which can be any node on the network making it generally
easy to join in a decentralized fashion.

Once it has joined the node discovers other nodes through the first node
by issuing ping and receiving pong descriptors from peers accepting connec-
tions. Gnutella nodes typically connect to three nodes and then search by
broadcasting their search request to all connected neighbours, as illustrated
here. Each neighbour repeats this search request to his/her neighbours and
so on, which is known as flooding the network. Here, User D has the required
file so User A connects directly to User D and downloads the file using this
point-to-point connection.
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2.3.5 Conclusion

There are many aspects to categorising a system as P2P. Although, a true
P2P system employs a completely decentralized structure (e.g., Gnutella),
there also exist other systems that have other structures, e.g., Napster has
a hybrid P2P structure and SETI has a centralized structure. Therefore, al-
though decentralization is not a required consideration of P2P systems, it is
a desired one. The real key features of P2P that make it a new computing
paradigm is that P2P applications:

1. operate at the edges of the Internet ; behind Firewalls and NAT Transla-
tion systems

2. operate in hostile environments, e.g., transient connections where failure
is the norm

3. take advantage of unused resources, e.g., storage, cycles, content, human
presence, etc.
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Web Services

Tim Berners-Lee, the inventor of the World Wide Web, noted:

As we look forward, we are tempted to distinguish between the mul-
timedia world of information targeted for human perception, and the
well-defined world of data which machines handle.... The Web tech-
nology must allow information intended for a human to be effectively
presented, and also allow machine processable data to be conveyed.
Only then can we start to use computers as tools again [155].

3.1 Introduction

Up until recently, data has been exported on the World Wide Web for human
consumption in the form of Web pages. Most people therefore use the Web
to read news/articles, to buy goods and services, to manage on-line accounts
and so on. For this purpose, we use a Web browser and access information
mostly through this medium.

From a publishing perspective, this involves converting the raw informa-
tion, from a database, for example, into HTML or similar language so that it
can be rendered in the correct form. Further, many Web sites collate informa-
tion from other sites via Web pages, which is a bizarre occurrence involving
decoding and parsing human-readable information not intended for machines
at all (see Fig. 3.1).

This scenario works well for many applications but it is highly redundant
because the conversion from the raw data into human-readable format for
publication and availability does not support software interactions very well.
What we really need to do is to provide a mechanism whereby the raw data
can be accessed in a similar fashion by machines as humans read Web pages
now. Therefore, a more efficient mechanism is required in order to enable true
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Fig. 3.1. We use the Web for Web browsing at the moment but the next generation
will be more focused on machine-to-machine interaction.

machine-to-machine communication to provide a machine-processable Web.
This is illustrated in Fig. 3.1.

Many believe, including Berners-Lee, that the next generation of the Web
will be about data, not text. Providing ubiquitous mechanisms for represent-
ing and providing data in a machine-readable fashion is at the core of Web
services. Companies are increasingly in need of standard mechanisms to be
able to publish, advertise and discover links to actual data sources, rather
than Web pages.

3.1.1 Looking Forward: What Do We Need?

In order to see what we need to build a new infrastructure that allows such
machine-to-machine Web communication, let’s take a brief look at why, and
how, the World Wide Web started.

Berners-Lee created the first Web browser in 1990 at CERN in Switzerland,
where a few thousand scientists worked using a variety of different comput-
ers. He soon found it frustrating to exchange data with different collaborators
because he had to log onto the various computers to be able to share infor-
mation.

After writing various similar programs to transfer and convert information
from one system to another, he started to think about better ways of achieving
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Fig. 3.2. The model for the World Wide Web. Multiple types of browsers can talk
to multiple types of machines if they share common address schemes, formats and
protocols.

this. He then came up with the idea of creating some imaginary information
system which everyone could read. He took the existing hypertext idea1 [173]
and wrote the first Web browser that connected via DNS and TCP to create
the start of the World Wide Web; but that, he says, was the easy bit . . . the
difficult bit was to get people to join in.

Figure 3.2 illustrates this idea. The Web allows many disparate informa-
tion systems to serve data by creating an abstract imaginary space where
these differences do not exist. A Universal Resource Identifier(URI) identified
the document and a suite of protocols (e.g., HTTP) and data formats (e.g.,
HTML) formed a bus which allowed computers to exchange information by
mapping from their local formats into standards that provided global in-
teroperability. The Web therefore was deployed as a set of protocols, not a
single program, as shown.

This layer provided the interface for interoperability between the diverse
clients and servers that existed on the Internet. The initial so-called World-
WideWeb browser was developed on a NeXT workstation and the first Web
server was nxoc01.cern.ch, later changing its name to info.cern.ch. The follow-
1 Vannevar Bush was the conceptual creator, laying out the notion of the modern

hyperlink in 1945, and in 1965, Ted Nelson coined the word “hypertext.”
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Fig. 3.3. Creating a machine-to-machine communicable Web involves building a
common layer of protocols.

ing year the Stanford Linear Accelerator Center (SLAC) in California became
the first Web server in the USA as the widespread distribution of the software
began.

In 1992, there were 50 Web servers worldwide; in 1993 NCSA released the
first alpha version of Marc Andreessen’s “Mosaic for X.” Then in October
1994, Berners-Lee founded the World Wide Web Consortium (W3C) for stan-
dardizing common protocols to promote the Web’s evolution and ensure its
interoperability. By this time, the WWW explosion had already set in. For
example, Internet users increased from 40 million in 1995 to 150 million in
1998 and 320 million by year 2000. Further, It has been projected that there
will be 1.12 billion Internet users by year-end 2005 [175].

For the machine-to-machine interoperable Web, we need the same kind of
group of protocols that will allow machines to interoperate at the data level.
To achieve this, we must build this layer out of standardized technologies in
order to gain widespread adoption.

The first step was for commercial and non-commercial sectors to agree
on a common data format in order to be able to expose their functionality
to others in a truly interoperable fashion. This led to the standardization of
XML through W3C [97], the latest version being 1.0, Third Edition [95].

Since then, a number of other technologies have been standardized through
W3C and other organizations, such as OASIS [167]. Figure 3.4 shows a list
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of a subset of the standards that are used at each level, ranging from the
network protocols, data transport and service descriptions, through to higher-
level workflow orchestration languages, such as BPEL4WS [172]. For a more
complete list, see [192].

The three core technologies will be described in detail in Chapter 13, but
briefly they are: SOAP, which provides an envelope for the XML message;
WSDL, which provides the description of the interface for the Web service;
and UDDI, which provides a lookup service for dynamically locating Web
services.

3.1.2 Representing Data and Semantics

The focus on representing and exchanging data on the Web is based around
the eXtensible Markup Language (XML). XML is an initiative from the W3C
defining an “extremely simple” dialect of the Standard Generalized Markup
Language (SGML) [164] that can be served, received and processed on the
World Wide Web in the way that is now possible with HTML.

XML is a structured document that is made up of storage units, containing
either parsed or unparsed data. Basically, XML is to data what HTML is to
text as XML allows you to define self-describing data. A description of XML
is outside the scope of this book and therefore, for more information please
see other resources, such as [95], [96], [99] and numerous books on the subject,
e.g., [162] and [163].

The focus on representing and exchanging data using XML has led to two
main thrusts in this direction. These are:

• The Semantic Web: is an extension of the current World Wide Web in
which information is given well-defined meaning, better enabling comput-
ers and people to work in cooperation [160]. It is focused on the represen-
tation of data and seeks to create a machine-processable Web. The effort is
led by W3C [161] with participation from a large number of researchers and
industrial partners. The Semantic Web is based on the Resource Descrip-
tion Framework (RDF), which integrates a variety of applications using
XML for syntax and URIs for naming.

• Web Services: are a software system designed to support interoperable
machine-to-machine interaction over a network [166]. In simple terms, Web
services provide the definitions (and infrastructure) to allow applications
to exchange XML messages with each other.

These two technologies do not compete, but rather they complement each
other. In a keynote speech [159], Berner-Lee said “Web services meet imme-
diate technology needs, while the Semantic Web has the potential for future
exponential growth.” Such convergence has led to a number of groups that are
focusing on this integration, e.g., [156] and [157]. In a recent paper the authors
noted [158] “Semantic Web Enabled Web Services (SWWS) will transform the
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Fig. 3.4. A taxonomy of the various technologies used to represent and deploy Web
services and those that can be influenced by semantics.

Web from a static collection of information into a distributed device of com-
putation on the basis of Semantic Web technology making content within the
World Wide Web machine-processable and machine-interpretable.”

Further, the authors define a taxonomy (see Fig. 3.4) that illustrates the
various Web services technologies with those that can be influenced by se-
mantics. Anything from the service description upwards can be enhanced to
include a rich layer of semantics that can be understood by applications.

In this chapter, we will take a look at the core infrastructure that can
enable machine-to-machine interactions now using Web services. For more
information on the Semantic Web, see the references listed above.

3.2 Web Services

Web services are a distributed systems technology that uses standard Internet
protocols to move XML documents between service processes [86]. Simply
therefore, Web services are software programs that enable applications to talk
to each other remotely via XML messages.

Briefly, a program sends a request to a remote Web service containing
an XML message and (optionally) receives a response (see Fig. 3.5). The
specifics about how such services are represented, advertised, discovered and



3.2 Web Services 49

communicated with are all defined by Web service standards, such as WSDL,
UDDI and SOAP, described in Chapter 13.

In a sense, Web services can be thought of as Internet-oriented text-based
integration adapters [87] and since any data format can be mapped in and
out of text, their applicability is widespread. Since Web services are based on
XML documents and document exchange, the technological underpinning of
Web services is often called document-oriented computing [86].

Although Web services are centred around documents, it does not neces-
sarily follow that such documents should be readable by people, which is re-
flected in the core goal of Web services, that is, to enable machine-to-machine
communication at the same scale and using the same style of protocols as the
human interface-centred World Wide Web.

The recent hype of Web services has been amplified by the current imple-
mentations of Web services, which are based on core Internet technology (i.e.,
Web servers), and since such text-based systems have been behind the success
of the World Wide Web, it therefore follows that Web services are the next
generation Internet. In fact, however, Web services do not need a Web server
to run at all (see Section 3.4.2).

3.2.1 A Minimal Web Service

Request

XML

Response

XML

Web

ServiceClient

Fig. 3.5. An illustration of the role of a Web service.
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A minimal Web service has three components [86]:

1. The Service: a service is a software component which is capable of pro-
cessing an XML document. The particular transport and application pro-
tocols, e.g., what programming language the service is written in, whether
it operates as a stand-alone process or is part of a Web or application
server, etc., is of no importance.

2. The Document: the XML document that is sent to a service which
contains the application-specific information.

3. The Address: this describes the protocol binding (e.g., TCP or HTTP)
along with the network address that can be used to access the service.
The address is also called a port reference.

Even though in principle, these should be enough to build a Web service,
in practice, at least one more component is added, that is, the Envelope or
message encapsulation protocol, which adds things like routing and security
information to the message without the need to modify the actual XML doc-
ument.

Typically, services use SOAP to define its envelope. Further, comprehen-
sive descriptions of Web services have also been adopted (i.e., WSDL) and if
you introduce these then it is useful to have a yellow pages for looking up such
descriptions (e.g., UDDI). These three technologies provide the programming
backbone for current Web services and are outlined later in this chapter and
described in detail in Chapter 13.

3.2.2 Web Services Architecture

Web services can be used to exchange simple or extremely complex XML
documents that can contain either document-oriented or procedural-oriented
information. They are based on standardized XML protocols which are sup-
ported globally by most major technology firms.

Web services are interoperable and loosely coupled, which go hand in hand
to create a powerful but flexible infrastructure for document exchange that
can work on all platforms. The key to this interoperability is XML which
provides the message-passing and service definitions in a operating system and
programming language neutral fashion. Messages, wherever they originated
from, are converted into XML before being transported to the remote service.

This is illustrated in Fig. 3.6, which shows this conversion process from
language-dependent clients (in C++ here) and services (in Java here), which
can interoperate through a common representation of the data, i.e., XML.
This leads to a many-to-one situation that is perfectly scalable; i.e., vendors
only have to write a data-to-XML and XML-to-data convertors once for each
supported language. Many already exist (e.g., for Java [171] and [170]). XML
provides the common ground for all diverse service implementations. Similar
architectures have been employed elsewhere; for example, Jxta uses an XML



3.2 Web Services 51

Envelope

XML

XML

Web

Service

Interface

Envelope

Web

Service

Server

XML XML Language

Specific

e.g. Java
XML

XML

XML

XML
Web Service

Client

C++

C++

Web Service

Client

Fig. 3.6. A Web service is loosely coupled, meaning that the Web service interface
is separated from its implementation.

data representation [15] but the protocols implemented around this are not
based on open standards.

Web services extend this approach to decouple the logic of the client and
the server by providing XML descriptions for the service interface (WSDL).
This means that a Web service can be accessed through a common-ground
interface which is independent of the back-end implementation.

Figure 3.6 illustrates this by showing a C client talking to a Web service
written in Java. Further, each Web service can have multiple language bind-
ings, which makes it easy to change the back-end implementation without the
client needing to update its code. For example, a company could keep the
same Web service interface but re-implement its C++ implementation of this
service in Java and the client would not even realise that it had been changed.

A service model that can provide diverse implementation behind a single
interface definition is defined to be a virtual service. The fact that Web services
are virtual was one of the compelling factors that led to the convergence of
Grid computing and Web services that will be discussed in Chapter 14.

An useful analogy of the decoupling of a Web service interface and its
implementation is a Java interface and implementation. Java interfaces are
similar to abstract classes except all of their methods are automatically public
and abstract. They provide an extensible mechanism for defining external
interfaces to objects that are used to represent some (or all) of its functionality.
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Java interfaces are similar to Web service interfaces in that they allow multiple
back-end implementations of the same interface. Within Web services, this
may involve implementations from different programming languages whereas
within Java, this typically involves creating objects that conform to the same
interface but provide different behaviour2. Such an approach is fundamental
to the Factory Method Design Pattern [174], which has proved to be popular
and good programming practice.

Due to the structure of Web services, they are suited to expose coarse-
grained functionality. The overhead of converting from programming language
to text and vice-versa means that the functionality exposed by a Web service
must justify this process and therefore typically several components are com-
bined. For example, a service, such as a method call in a Java class is far too
fine an operation for a Web service.

Having looked at the key features and architecture of Web services, let’s
look at a more advanced definition, which represents these features in more
detail:

Web services are loosely coupled, reusable software components that
semantically encapsulate discrete functionality and are distributed
and programmatically accessible over standard Internet protocols
[165].

3.2.3 Web Services Development

As Web services decouple the Web service interface from the back-end imple-
mentation, there are a number of ways that a developer can integrate appli-
cations. There have been four common development practices identified [93]
that are useful to illustrate such possible scenarios:

1. Greenfield: the developer starts from scratch, creating not only the
Web service but also the application functionality being exposed as a
Web service.

2. Bottom up: the functionality being exposed as a Web service (i.e., the
back-end application) already exists and the programmer needs to design
a suitable interface.

3. Top down: you start with an existing Web service interface and then
create the application functionality capable of implementing that inter-
face.

4. Meet in the middle: this is a combination of the bottom-up and top-
down scenarios. Here, the Web services interface (abstract WSDL) and
existing application code exist already and you need to integrate them.
This may involve creating a bridge between the Web service interface and
the underlying operations implemented in the application.

2 Objects could use Java interfaces to bind to different languages also, using JNI.
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A number of companies are now using the bottom-up approach to ex-
pose current functionality as Web services, thus enabling better machine-to-
machine communication of such services.

3.3 Service-Oriented Architecture

The Service-Oriented Architecture (SOA) is an example of the composite com-
puting model, which is defined as:

The composite computing model is an architecture that uses dis-
tributed, discovery-based execution to expose and manage a collection
of service-oriented software assets [94].

At the fundamental level, an SOA is a collection of services on a network
that communicate with each other. The services are loosely coupled, have
well-defined interfaces and are reusable. An SOA therefore has a higher-level
view of coarse-grained application development that uses standard interfaces
to hide the underlying technical complexity.

In an SOA, the capabilities (i.e., software assets) should be dynamically
discoverable, there should be a clear separation of the software’s capabilities
and its implementation and it should be possible to quickly assemble im-
promptu computing communities with minimal coordinated planning efforts,
installation technicalities or human intervention. For more details on SOAs
see [106].

It is important to note that an SOA does not require Web services and
further, Web services can be deployed without an SOA. However, many believe
that building an SOA using Web services is the ideal approach.

3.3.1 A Web Service SOA

A service can be described, discovered and invoked using standardized XML
technologies in the current Web services technology stack. There are three
main components:

1. SOAP: the envelope for a Web service that contains the XML message
2. WSDL: an XML format for describing the interface to a Web service
3. UDDI: the repository (the yellow pages) for a number of deployed Web

services.

SOAP messages (when used for Web service requests and responses) con-
form to the WSDL definition of available Web services. Typically, WSDL
defines the interface and location of the Web service, the SOAP message used
to access the Web services and the protocols over which such SOAP messages
can be exchanged and the WSDL descriptors can be accessed via a UDDI
repository (or another directory service).
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Fig. 3.7. An overview of the service-oriented architecture.

Services are implemented and published by service providers, discovered
and invoked by service requesters and information about a service may be
kept within a service registry. Therefore, we have three essential operations
that you would want to perform:

• Publish: Performed by the service provider to advertise the existence and
capabilities of a service

• Find or Locate: Performed by the service requester to locate a service
that meets a particular need or technology fingerprint

• Bind or Invoke: Performed by the service requester to invoke the service
being provided by the service provider.

Figure 3.7 illustrates how these operations map to the underlying Web
service protocols. Service providers create a WDSL interface for their Web
service that specifies its functionality. The WSDL document also contains the
location (address) of the service and the transport mechanism that is used
to contact the service. Therefore, to publish a service, the service provider
registers the WSDL document with the UDDI registry (typically by providing
a link to the location of the document).

When a service requester wishes to use a service, it contacts the UDDI
server, searches through its database and finds a service that closely matches
the search criteria to obtain the location of the WSDL file. Then, the ser-
vice requester uses the WSDL file to create a request/response invocation on
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the Web service. The message for the invocation is typically wrapped in an
envelope, using SOAP, and sent to the Web service. SOAP includes various
transport bindings and data encoding mechanisms, which are described in
Chapter 13.

3.4 Common Web Service Misconceptions

In this section, some common Web service misconceptions are discussed. The
brief notes here are a summary of the key points raised by Vogels [86], so for
more information please read the original article.

3.4.1 Web Services and Distributed Objects

Web services are simply a mechanism for exchanging structured XML docu-
ments. This is a very different concept from requesting the instantiation of an
object, and therefore Web services should not be confused with distributed
object systems. For example, in Jini (see Chapter 5, for example), which is
an example of a distributed object system, objects can be remotely invoked
by using a local proxy which maintains a reference to the particular instance
of the remote object. Using this proxy, the client can alter the state of the
remote object since it is persisted within the distributed environment.

A system that can maintain the state of remote objects is referred to as
a stateful distributed system. Web services however have no notion of state,
and they fall into the category of distributed system techniques that enable
stateless computing; i.e., invoking the same Web service twice in succession
will be treated as two independent invocations to separate instances of the
same service. Once the invocation is finished, the session cleans up and all
local data is lost. Of course, an application could be constructed in such a
way that state could be retained but this would involve a layer over the core
Web services technology; e.g., identification numbers could be used to update
remote databases (a notion addressed by OGSA [21] and WSRF [25]).

3.4.2 Web Services and Web Servers

There is a common misconception that Web services require HTTP and a
Web server in order to run. This is not true but the confusion is amplified
because most Web services are deployed within a Web server environment.

As we’ll see in Chapter 13, the use of SOAP, WSDL or UDDI does not
require the use of a Web server but the most popular hosting environments
do actually use one. To invoke a Web service, SOAP is typically used, which
can run over a number of different transport protocols apart from HTTP. For
example, SOAP can work using JMS or SMTP and can be therefore hosted
in a number of different ways. For SOAP to work within a Web server, it
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basically uses the HTTP protocol to deliver the data to a back-end SOAP
server, typically implemented using a Java servlet. It is the SOAP server
itself that communicates and translates the information to and from the Web
service. The Web server itself is simply a delivery mechanism.

The advantages of using a Web server to host Web services however are
numerous. First, they alleviate a number of administrative problems with
respect to firewalls because well-known trusted ports are used. Second, the
Web server technology is tried and trusted and has been shown to be robust,
therefore providing a solid backbone for the Web service environment.

Alternatively, there are a number of toolkits that can be used to develop
and integrate Web services that do not rely on a Web server to function. For
example, PocketSoap [88], WASP [89], the Emerging Technologies Toolkit [90]
and the WSE [91]. As the adoption increases, I’m sure we’ll see other hosting
environments appear within the community, e.g., within P2P.

3.5 Conclusion

In this chapter, a historical perspective and conceptual overview of Web ser-
vices was given. The next stage of the Web evolution is more focused on
the representation and machine-to-machine communication of data, rather
than the textual representation within a Web browser that has been the
quintessence of the modern Internet. To this end, a number of protocols and
data formats have been introduced to provide a common layer of technologies
that are capable of enabling such machine-to-machine interaction.

Web services are focused on building such capabilities on top of today’s
Internet and therefore the role of standardization is playing an important role
in defining this environment. The standardized technologies that are at the
core of Web services are XML, SOAP, WSDL and UDDI, which form the core
of the Web services technology stack that will be discussed in Chapter 13.
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Grid Computing

Over the past decade there has been a huge shift in the way we perceive
and utilize computing resources. Previously, computing needs were typically
achieved by using localised resources and infrastructures and high-end scien-
tific calculations would be performed on dedicated parallel machines. How-
ever, nowadays, we are seeing an increasing number of wide-area distributed-
computing applications, which has led to the development of many different
types of middleware, libraries and tools that allow geographically distributed
resources to be unified into a single application. This approach to distributed
computing has come under a wide number of different names, such as meta-
computing, scalable computing, global computing, Internet computing and
more recently, Grid computing.

4.1 The Grid Dream

The name Grid takes its name from an analogy with the electrical power grid.
The Grid dream is to allow users to tap into resources off the Internet as easily
as electrical power can be drawn from a wall socket. To make this happen, not
only does the underlying infrastructure (called the power grid for electricity
and simply the Grid for computing) have to be pervasive, but we would need
a number of levels of security and accountancy to provide transparent access,
just as one has with power. For example, imagine when you plug in your kettle,
your only concern is, have you filled it with water. You should not have to
worry about where the electricity comes from, whether it is bought from other
countries or generated from coal, windfarms, etc. You should simply take for
granted that when your appliance is plugged in it will get the power it needs.

The Grid is trying to implement this same scenario for a different type of
utility, i.e., when you sit at your computer, your only concern should be that
you have a smart idea (e.g., some scientific analysis, etc.) and you want this
idea to be realised without knowing (or caring) what other computer resources
you are using and where they are located. Just as a power grid is a utility



58 4 Grid Computing

(i.e., you ask for electricity, you get it and pay accordingly), the Grid is also
seen as a utility (i.e., you ask for computer power, storage or service capacities
and you get it), and consequently you pay for it. Such issues are tackled by
the Grid middleware.

Currently, however, Grid accountancy is not really practical or functional
but a number of users and scientists have devoted their machines to form a
prototype Grid for research development of these essential services needed for
widespread adoption. In reality, however, there is not one single “Grid”, rather
there are many different types: some are evolving, some private, some public,
some regional, some global, some specific (e.g., dedicated to one scientific
application) and some generic. Such Grids have realistic goals but do not
attempt to solve the whole Grid problem. It will be some time before the
power grid analogy becomes reality (if ever).

Interestingly though, there are companies [137] that are starting to offer
broadband high-speed Internet access through standard electrical sockets in
homes and businesses. Such connections take advantage of the extensive elec-
tricity network already in place. A specially designed modem (that consumes
power of the order of one quarter of a 40 W lightbulb) transmits the broad-
band information across existing electricity cables to the electricity substation.
From here, the data is collected and transported over a local network and onto
the Internet. Trials of such systems have indicated that symmetrical speeds of
up to 1 Mbit/s can be achieved. Imagine, anywhere you have a power socket,
you can tap into the Internet; combine this with the Grid computing dream
and then perhaps it really could become a reality!

4.2 Social Perspective

For a Grid to be successful, we not only have to tackle the huge techno-
logical problems but also address the social aspects [33] of how to engage
researchers, educators, businesses and consumers in using the Grid as part
of their every-day work. In describing the Grid, the authors noted [32] that
the first recognisable grid was Edisons power distribution grid in New York.
Its goal was to supply power to Wall Street in 1882 at the same price as the
current existing technology and therefore costs needed to be kept down at
every step.

At the core of his economic analysis was Ohms Law, which was used to
control the cost of generating, distributing and using electricity [35]. Edison
chose Wall Street because he could only compete with gas if there were a high
enough population density to yield economic return, given the cost relation-
ships defined by Ohms Law (he also had to choose an area where he could find
capital for the switching costs). Here, it is plain to see that the social good of
any new infrastructure has wide social implications, i.e., if those investing in
this new technology do not see an economic return then its progress will slow
down and consequently, so will its widespread availability.
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This is also true for today’s Grid because its adoption within the wider
community is also highly dependent on social acceptance and industrial suc-
cess if the cost-volume relations are to break even. Grid computing has at-
tempted to address these issues in a number of ways, for example, by gaining
large industrial backing and by conforming to international standards. For
example, there is much support for the lower-level infrastructure, and several
companies and institutions have already committed massive amounts of re-
sources to the Grid. For example, the U.S. National Science Foundation has
committed $53 million on the TeraGrid [138], that will include 13.6 teraflops of
computing power, over 450 terabytes of data storage, and high-resolution vi-
sualization systems, interconnected by a 40 Gbps network. The actual nodes
are Linux clusters of Intel-based IBM computers with Sun and Oracle also
being involved. Similar initiatives are also happening elsewhere. Also, the
convergence of Web services and Grid computing in the form of the Open
Grid Service Architecture (OGSA) [27] and more recently the Web Services
Resource Framework (WSRF) [25], [26] are clear moves in support of globally
accepted standards (also see Section 4.5.2).

4.3 History of the Grid

In this section, a context is given for the introduction of how Grids came into
being by taking a look at early metacomputing techniques that led to the
evolution of Grid technology. The sections here form a brief summary of some
of the key systems in the development of Grid technologies. The authors [119]
identify three different generations in the evolution of the Grid:

1. First Generation: Early metacomputing environments, such as FAFNER
[120] and the I-WAY [121].

2. Second Generation: This saw the introductions of: core Grid technolo-
gies like the Globus toolkit [28] and Legion [123]; distributed object sys-
tems, e.g., Jini [78] and CORBA [126]; Grid resource brokers and Sched-
ulers, e.g., Condor, [125], LSF [111], SGE [135]; a number of integrated
systems including Cactus [134], DataGrid [118], UNICORE [132] and P2P
computing frameworks, e.g., Jxta [15]; and application user interfaces for
remote steering and visualization, e.g., Portals and Grid Computing En-
vironments (GCE) [143].

3. The Third Generation: This saw the introduction of a service-oriented
approach (e.g., OGSA [21]) and the increasing use of metadata (giving
more detailed information describing services) through semantic Web re-
search [129] and the introduction of collaborative technologies, such as the
Access Grid [130].

The next three sections give a brief summary of the key technologies and
explain the progression towards the current state of the art in Grid research.
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4.3.1 The First Generation

In the early 1990s there was a shift in emphasis placed on wide-area dis-
tributed computing. A new wave of high-performance applications were being
developed, which requires specific requirements that were not achievable on a
single computer. Two representative, yet diverse, experiments are described
here that provided an infrastructure for access to computational resources by
high-performance applications: these are FAFNER [120] and the I-WAY [121].

As described in detail in Section 8.3.4, the RSA algorithm for asymmetric
cryptography is based on the premise that large numbers are very difficult
to factorize. In 1991, RSA Data Security Inc. initiated the Factoring Chal-
lenge in order to provide a test bed for factoring implementations. FAFNER
(Factoring via Network-Enabled Recursion) was set up to factor via the Web
and any computer with more than 4 MB of memory could participate in this
experiment. Specifically, FAFNER was set up to factor RSA 130 using the
Number Field Sieve (NFS) factoring method. They created a Web interface
form in HTML for NFS and contributors could take this form and use it to
invoke CGI scripts to perform the factoring. FAFNER is basically a collection
of Perl scripts, HTML pages and associated documentation, which comprises
the server-side of the factoring effort. The FAFNER software itself doesn’t
factor the RSA130, rather, it provides interactive registration, task assign-
ment and solution database services to clients that perform the actual work.
FAFNER was a forerunner to systems such as SETI [3], Distributed.net [64],
Entropia [55] and United Devices [54], to name a few.

The I-WAY experiment was started as a project to link various super-
computing centres and to provide the infrastructure for a metacomputing
[112] environment for high computational scientific applications [121]. This
connectivity involved using high-speed networks, which gave application de-
velopers access to a wide variety of resources, e.g., supercomputers, databases
and scientific instruments, all potentially located at geographically distributed
sites. The I-WAY environment allowed the assembly of unique capabilities that
could not otherwise be created in a cost-effective manner and was the forerun-
ner for the Globus toolkit. The I-WAY connected supercomputers and other
resources at 17 sites across North America based on ATM connectivity. The
I-WAY consisted of a number of I-POP (point of presence) servers [122] that
were connected by the Internet or ATM networks (see Fig. 4.1). The I-Soft
software infrastructure could be used to access the configured I-POP machines
and provided an environment that consisted of a number of services, includ-
ing scheduling, security (authentication and auditing), parallel programming
support (process creation and communication) and a distributed file system
(using AFS, the Andrew File System).

Sixty different groups used this network to create a diverse set of applica-
tions, for example: to construct large-scale scientific simulations [115], [116],
collaborative engineering [113], [114], and supercomputer-enhanced scientific
instruments [113], [117]. The I-Soft toolkit formed the basis of the Globus
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Fig. 4.1. The I-WAY network, consisting of cooperating I-POP servers that could
communicate across the Internet or ATM networks.

toolkit, which is in widespread adoption throughout the Grid computing world
today.

4.3.2 The Second Generation

The I-WAY paved the path for the second generation of metacomputing tech-
nologies that aimed to provide a common infrastructure for Grid applications
through the development of the Globus toolkit (see Section 4.7) and Legion
[123]. Legion is an integrated operating system for Grids or meta-systems. Its
focus is to give the user the impression that he is using a global virtual com-
puter, which transparently handles all the complexity involved with having
such a distributed system (scheduling on processors, data transfer, commu-
nication and synchronization). Legion has an object-oriented design; every
component (hosts, files, programs) is represented as an object. It is written
in MPL (Mentat Programming Language) [124], which is a parallel version
of C++, and supports applications written in MPL, FORTRAN and Java as
well as the use of MPI and PVM.

During the second generation, we saw the widespread adoption of dis-
tributed object systems, such as Jini (see Chapter 5) and CORBA [126]. The
Common Object Request Broker Architecture (CORBA) is developed by the
Object Management Group [128] and defines an object-oriented model for
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accessing distributed objects. CORBA supports describing interfaces to ac-
tive, distributed objects via an Interface Description Language (IDL), which
can be linked to code written in any of the supported languages (C, C++,
Java, COBOL, Smalltalk, Ada, Lisp, Python and IDLscript). Compiled ob-
ject implementations use the Object Request Broker (ORB) to perform remote
method invocations.

For many scientists, their research is highly dependent on computing
throughput, which follows the SIMD (Single Instruction, Multiple Data) paral-
lel computing model. Here, a scientist would require that the same program
be iterated many times over different data. Such a class of problem is also
called High-Throughput Computing (HTC). In this generation of the Grid,
we saw a number of Grid resource brokers and schedulers that supported this
class of application. These were either introduced or extended for operation on
the Grid, e.g., Condor, [125], LSF [111] and SGE [135]. For example, Condor
is a system that takes advantage of idle machines (e.g., at night or weekends)
and allows the submission of many jobs at the same time. Source code does
not have to be modified in any way to use Condor and it supports trans-
parent checkpointing and migration of jobs across the network. Checkpointing
involves saving a job’s state to disk so that it can be resumed at a later stage,
either locally or remotely by migrating (or moving) it to another machine.

Also, in this generation, we saw a number of integrated systems including
Cactus [134], DataGrid [118], UNICORE [132] and P2P computing frame-
works (e.g., Jxta [15]; see Chapter 10) and application user interfaces for
remote steering and visualization, i.e., portals. Briefly, Cactus is a problem-
solving environment designed for scientists and engineers. It has a modular
structure which can be distributed across a parallel machine and the Grid.
Cactus originated in academic research and is one of the driving applica-
tions in the Gridlab project [34] (Triana [29] being the other). Cactus runs on
many architectures and supports checkpointing, which was demonstrated in
the Cactus Worm experiment [133] that deployed Cactus on the Grid using
the Globus toolkit. DataGrid’s objective is to enable next-generation scien-
tific exploration that requires intensive computation and the analysis of large-
scale shared databases. Such databases range from hundreds of terabytes to
petabytes and are used by widely distributed scientific communities. UNI-
CORE attempts to make seamless Grid computing a reality for non-Grid ex-
perts. It has developed a user-friendly interface that allows easy and uniform
access to distributed computing resources and provides support for running
scientific and engineering applications.

4.3.3 The Third Generation

The second generation paved the way for the basic interoperability to enable
large-scale distributed computation and sharing of resources. The key focus
of the third generation extended this model to allow the flexible assembly of
Grid resources by exposing the functionality through standard interfaces with
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agreed interpretation. This solution employed the use of the service-oriented
model with increasing attention to metadata of such services. The defining
paper of the Grid anatomy [22] focused on terms, such as distributed collab-
oration and virtual organizations and identified a model based on the Open
Grid Service Architecture model. OGSA represents a convergence with the
Web services and allows Grid protocols to be exposed through Web services’
XML standardized technologies, such as WSDL, UDDI and SOAP, described
in detail in Chapter 14. The following sections in this chapter introduce the
foundations for some of these key concepts and give a broad overview of the
functionality of the most widely used Grid toolkit, Globus.

4.4 The Grid Computing Architecture

In [22], the authors define Grid computing as “flexible, secure, coordinated
resource sharing among dynamic collections of individuals, institutions, and
resources”. The emphasis here being on the flexible and dynamic environment
that can be used to discover and interoperate with distributed resources. This
coordinated resource sharing is undertaken via multi-institutional virtual or-
ganizations. Virtual Organizations provide a highly controlled environment
to allow each resource provider to specify exactly what she wants to share,
who is allowed to share it and the conditions whereby this sharing occurs.
The set of individuals and/or institutions that provides such sharing rules is
collectively known as a virtual organization (VO).

In Grid computing, users can share or have direct access to computers,
software, data and other resources. This transparent access to distributed
resources is achieved through the use of middleware, e.g, Globus (see Section
4.7).

VOs are not original in concept. In many ways, they are similar to Jxta
peer groups (see Section 10.3.1), which also facilitate the dynamic creation of
a collection of cooperating peers that have a common set of goals. In Jxta,
groups share common group protocols that can provide authentication, au-
thorization and other policies for their interaction. Sharing resources can also
be set at finer levels of granularity within the peer group itself so that specific
criteria can be set for each resource or person accessing that resource. The
VO and peer group concepts are very similar but the terminology and terms
used are different.

Figure 4.2 illustrates the Grid architecture. Here, users/clients use the
standard Internet via a Grid middleware toolkit, e.g., Globus. This toolkit en-
ables them to discover the existence of distributed resources, make reservations
for their use and then gain direct access to them. The direct access is achieved
via standard Internet technologies, such as FTP or the Grid-enhanced version
GridFTP [108]. Therefore, the routing of the data is achieved by standard
TCP/IP routing and therefore could pass through several intermediaries but
is not controlled by higher-level mechanisms, e.g., like those employed by P2P
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Fig. 4.2. The architecture of a computational Grid. The middleware (e.g., Globus)
enables clients to access distributed resources from another administrative domain
(i.e., virtual organization), whilst providing transparency across the various proto-
cols of the underlying Internet, as shown.

infrastructures such as Jxta (see Chapter 10). Also shown here is the con-
cept of the virtual organization which provides a blanket for every resource
to define its sharing and security policies.

4.4.1 Virtual Organizations and the Sharing of Resources

VOs are dynamically accessible from a Grid application and applications are
capable of spanning a number of different organizations, each running its own
VO. The authors [22] identify a number of examples of different VOs and
scenarios. Some of these are illustrated here:

• Resource Providers: application service providers, storage service providers
and CPU cycle providers all can represent a VO.

• Product Design: for example, here, several organizations could form an
industrial consortium in order to integrate sophisticated tools to simulate
a next-generation supersonic aircraft. The simulation will need to inte-
grate and aggregate multiple software and hardware resources, including
sensitive proprietary software components developed by the various partic-
ipants. Each component may operate on its machine but has access to the
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necessary design databases and related information. Security is paramount
because, although such organizations have agreed to collaborate, they do
not want to lose intellectual copyright on their constituent software com-
ponents, which may have been developed over many years. Such a scenario
could enable the collaboration to prototype and cost-estimate the produc-
tion of such an aircraft even though no one partner has complete knowledge
of the entire process.

• Crisis Management: for example, a team may be set up to respond to
a chemical spill by using local weather and soil models to estimate the
spread of the spill. This could determine the impact based on factors such
as the location of the population and environmental considerations, e.g.,
rivers, water supplies, etc. and create a short-term emergency plan that
could evacuate and notify the relevant authorities and hospitals. Other
examples here include using modules that could be developed to forecast
extreme hazardous events such as avalanching, flooding, landslides, storms
or forest fires. For example, for the case of a severe storm, the output from
the operational meteorological forecast models could drive the suite of
fine scale models for the primary target area of the storm. The fine-scale
models could locally forecast maximum wind speeds, the snow loading of
avalanche slopes, river run-off, or landslide danger.

• Data Intense Applications: for example, the members of a large, in-
ternational, high-energy physics collaboration, such as DataGrid [118], de-
scribed earlier, could also form a VO.

Although each of these examples differs in many ways, e.g., the number
and type of participants, the activities, the duration and scale of the interac-
tion, and the particular resources being shared, they each share a common set
of goals, i.e., to collaborate. In every case, each organization will consist of a
number of distrustful participants who may or may not have prior relation-
ships with those who wish to share their resources. Further, in some cases the
data could be sensitive, e.g., direct access to a sensor or an incoming physics
data stream. Therefore, each participant must be sure that she only shares
such resources with permissible participants.

The scope for the VO can span multiple organizations but its granularity
depends on the specific collaboration at hand. Therefore, it could be conve-
nient within a multi-institutional collaboration to have a specific policy and
therefore fit the entire collaboration under one VO. However, in other scenar-
ios several VOs representing the participating institutions could be integrated.
The actual designing of how many VOs you want to use is completely flexi-
ble and an organization can participate in one or more VOs by sharing some
or all of its resources. Figure 4.3 illustrates an example of one organization
blanketed by its own VO (VO1) simultaneously accessing resources from two
other virtual organizations, VO2 and VO3.

The pooling of resources at multiple sites is a key element in aggregating
functionality that exposes new services to the community that could not have
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Fig. 4.3. Three virtual organizations. Users can access multiple VOs and access a
number of different services across the multiple sites.

been previously achieved. The actual sharing of resources is dependent on the
choices made by the resource owner, i.e., when, where and what can be done.
For example, a participant in a VO may only accept secure computational
resources by some defined policy.

The implementation of a VO must be flexible and allow mechanisms for
users to express policies, to establish identities (of users and resources) for
authentication and to authorize the use of the particular operation. Further,
such relationships can vary over time depending on various factors, e.g., the
availability of resources, the access to morphed data sets etc. Further, such
sharing relationships are very much P2P in nature; e.g., providers can also be
consumers and sharing can exist at many levels; e.g., there could be common
sharing relationships to coordinate the use across many resources, spanning
many different organizations. Here, the ability to delegate authority in con-
trolled ways becomes very important along with the coordination mechanisms,
e.g., co-scheduling. Such issues are addressed in the Globus toolkit; see Section
4.7.



4.5 To Be or Not to Be a Grid: These Are the Criteria... 67

4.5 To Be or Not to Be a Grid: These Are the Criteria...

The Grid is defined [139] as something that “coordinates distributed resources
using standard, open, general-purpose protocols and interfaces to deliver re-
quired qualities of service” (also becoming known as “qualities of experience”).
To qualify this vision, there have been specific criteria that have been identi-
fied, which an application must support to be classified as a Grid. In Foster’s
paper, [107], he outlines a three-point checklist; that is, a Grid:

1. coordinates resources that are not subject to centralized control
2. uses standard, open, general-purpose protocols and interfaces
3. delivers non-trivial qualities of service.

These criteria have been reiterated elsewhere [33] and form the basis for
current guidelines from programming Grids1. The Globus toolkit, for exam-
ple, supports the creation of Grids by meeting all criteria. These, perhaps
somewhat contrived, criteria mean that other systems do not qualify as Grids
for various reasons. For example, Jxta could not be considered a Grid because
it does not use standard protocols and Condor [125] couldn’t be considered a
Grid because it has centralized control. In the following three sections these
criteria are described in more detail.

4.5.1 Centralized Control

The first point in the checklist is talking about how the resources that make
up the distributed system are controlled, whether they are:

• centrally controlled by one administrator (a non-Grid)
• consist of a number of interacting administrative domains that pull re-

sources together using common policies.

There are a number of issues here that support these criteria. For exam-
ple, resources within a collaborative development may be owned by different
organizations, who would not be happy to surrender control of their resources
under some central management infrastructure. Second, since the Grid aims
to join a larger number of resources then any centralized control will certainly
affect its scalability.

Therefore, computational Grids should connect resources at different ad-
ministrative domains. Typically, this is achieved by defining and using a vir-
tual organization (see Section 4.4.1 that provides a controlled environment for
its set of individuals and/or institutions. However, other protocols and mech-
anisms exist elsewhere to achieve similar desirable results; e.g., most P2P
applications achieve this, although at varying degrees of granularity.
1 There are a number of researchers who think these criteria are too restrictive; see

[20] for a collection of articles on the subject.
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Jxta, for example, supports VO concepts but also much finer levels of
granularity and has the capability of connecting a vast number of machines
administered by different organizations or users. Other systems, e.g., FreeNet
(see Chapter 9) provide a virtual overlay that allows secure encrypted storage
and retrieval across millions of computers, potentially spanning millions of
different administrative domains.

There are also several examples of systems that are not Grids under this
category; e.g., Sun’s Grid Engine [110] or Platform’s Load-Sharing Facility
[111] have a centralized control of the hosts they manage.

4.5.2 Standard, Open, General-Purpose Protocols

The Grid architecture is a protocol architecture [22]. It is important that such
protocols and interfaces are multi-purpose, standard and open. If not then we
are dealing with an application-specific system that will not generalize to the
wider community. Within the Grid, such standards-based open protocols de-
fine the basic mechanisms of how users and resources (from within a VO)
negotiate, establish, manage and exploit sharing relationships. The Grid vi-
sion therefore, is about creating or using existing standards for open and
generalized protocols, interfaces and policies that enable this level of resource
sharing within such a distributed system.

In essence, Grid computing is aiming to help standardize the way we do
distributed computing rather than having a multitude of non-interoperable
distributed systems. A standards-based open architecture promotes extensi-
bility, interoperability and portability because it has general agreement within
the community. To help with this standardization process, the Grid commu-
nity has the successful and popular Global Grid Forum (GGF) [109], which
hosts three conferences a year with both research groups (for researching ar-
eas) and working groups (for standardization) existing in a number of different
areas.

For example, the newly adopted OGSA and OGSI (see Chapter 14)
by Globus [28] have working groups concentrating on their standardization
throughout the whole Grid community. Further, the de facto implementation
of the core Grid standards, Globus [28], has over six years of experience deal-
ing with the Grid community and the new version of its toolkit has embraced
Web services (see Chapter 3) to create a standardized interface to their Grid
services (see Chapter 14).

Many systems fail on this criterion but excel in the other two categories.
For example, distributed computing systems that harness idle CPU cycles,
e.g., Entropia [55] and United Devices [54] and file-sharing systems, such as
Gnutella [6] all deliver high levels of QoS, albeit for specialized services, but
for the most part are not based on open standards, and therefore are too
specific for generalized use; e.g., it would be difficult to see how the Gnutella
protocol could be useful for anything but searching for files or data content.
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4.5.3 Quality Of Service

A key parameter in Grid systems is the Quality of Service (QoS). When a
Grid job has QoS requirements, it is often necessary to negotiate a service-
level agreement beforehand to enforce this certain level of service. There are
three types of quality support that can be provided:

1. None: No QoS is supported at all.
2. Soft: You can specify QoS requirements and these will try to be met

but they cannot be guaranteed. This is the most common form of QoS
implemented in Grid applications.

3. Hard: This is where all nodes on the Grid support and guarantee the level
of QoS requested.

A Grid should be able to deliver non-trivial QoS, whether, for example,
this is measured by performance, service or data availability or data transfer.
QoS is application specific and it completely depends on the needs of the
application. For example, in a physics experiment, the QoS may be specified
in terms of computational throughput but on other experiments, the QoS may
be specified in terms of reliability of file transfers or data content.

4.6 Types of Grid

Broadly speaking, there are three types of Grid:

1. Computational Grids
2. Data Grids
3. Service Grids.

A computational Grid is a distributed set of resources that are dedicated
to aggregate computational capacity. Computational Grids are highly suit-
able for task farming or high-throughout computing applications where there
is typically one data set and a huge parameter space through which the sci-
entist wishes to search. The scientist will be typically searching for some phe-
nomenon (e.g., whilst searching for gravitational wave signals) or some stabil-
isation or convergence of network state (e.g., teaching a neural network). Such
algorithms involve little or no communication between the nodes and there-
fore fit excellently onto a coarse-grained processor, such as the Grid. There
are many infrastructures for this, including those outlined in Section 4.3.2.

A data Grid is a collection of distributed resources that are specifically set
up for processing and transferring large amounts of data. Here, the European
DataGrid project [118] is a good example, focusing on the development of
middleware services to enable distributed analysis of physics data from CERN.
At its core, DataGrid uses Globus but adds a rich set of functionality on top
of this to support data Grids. For example, it employs a hierarchical structure
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that will distribute several petabytes of data to various sites across the world.
They use global namespaces to differentiate between different and replicated
data sets and this huge data Grid will load balance the analysis jobs from
over 700 physicists for the largest throughput for this community.

A service Grid is a collection of distributed resources that provides a
service that cannot possibly be achieved through one single computer. In
this example therefore, the Grid will typically consist of several different re-
sources, each providing a specific function that needs to be aggregated in
order to collectively perform the desired services. For example, you could
have a service that obtained its functionality by integrating and connecting
databases from two separate VOs (representing two data streams from physics
sensors/detectors) in order to output their correlation. Such a service could
not be provided by one organization or the other since the output relies on
the combination of both.

4.7 The Globus Toolkit 2.x

Over the past several years many protocols, services and tools have sprung
from research and development efforts within the Grid community. Such tools
have attempted to address the challenges of building scalable VOs through
the use of services such as cross-institutional security management, resource
management and co-allocation, information services and data management
services for data replication and transfer. These tools have been implemented
by the Globus toolkit [28], which enables applications to handle distributed
heterogeneous computing resources as a single virtual machine. The Globus
project is a U.S. multi-institutional research effort that seeks to enable the
construction of computational grids and contains a core set of services that aim
to provide solutions for the Grid infrastructure. These services use standards
(some achieved through the GGF) wherever possible and have well-defined
interfaces that can be integrated into applications in an incremental fashion.

The Globus toolkit consists of four layers, as outlined in Fig. 4.4. The first
layer, the Grid fabric, consists of the actual resources that you want to make
available to the Grid application. The components of this Grid fabric are in-
tegrated by Grid APIs that have been implemented by the Globus toolkit.
Such APIs are now being exposed as Grid services in the Globus Toolkit 3.x
(see Chapter 14). The third layer typically consists of a set of capabilities that
are specific to an application or a set of applications. For example, DataGrid
has created such a layer for flexible transportation of data and all DataGrid
applications access the various Grid functionalities through this layer. More
generalized application-level interfaces have also been recently implemented,
for example, within the EU-funded Gridlab project [34]. Within these lay-
ers, other services that provide remote steering services (i.e., to dynamically
change parameters of a remote application, for example) and to give access
to the current state of the application are typically provided through the use
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Fig. 4.4. The Globus Toolkit 2.x, showing the various layers in the Grid technology
stack. The key building block for an application is the Globus toolkit.

of a Grid portal [143]) or another graphical interface, e.g., a visual problem
solving environment [29].

Finally, the fourth layer is the actual application. There are a wide num-
ber of applications, i.e., hundreds that have used Globus to build multi-
institutional Grids. Some examples of key worldwide projects and forums are
given in Appendix A.

4.7.1 Globus Tools

This section outlines these main services provided by the 2.x version of the
Globus toolkit. See Chapter 14 for details of the 3.x toolkit. the purpose
of this section is to give the reader an overview of the types of services on
which the Globus team have been focused. Rather than providing a uniform
programming model, such as the object-oriented model, the Globus toolkit
provides a bag of services that programmers developing both specific tools or
applications can use to meet their needs. Such a methodology is only possible
when such capabilities are distinct and have well-defined interfaces that can be
incorporated into applications or tools in an incremental fashion. The Globus
toolkit essentially consists of four elements:

1. Security: to provide authentication, delegation and authorization.
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2. Information Services: to provide information about Grid services.
3. Data Management: involves accessing and managing data.
4. Resource Management: to allocate resources provided by a Grid.

These will be described in more detail in the following four sections.

4.7.2 Security

The Grid Security Infrastructure (GSI) provides security mechanisms, i.e.,
authentication and communication over an open network. GSI supports a
number of features that a Grid user requires; e.g., authenticate using a single
sign-on mechanism, delegation, integration with local security systems and
trust-based relationships. GSI is based on public-key encryption (using X.509
certificates) and SSL but extensions have been added for single sign-on and
delegation. The GSI implementation in Globus adheres to the IETF GSS-API
standard [148].

X.509 certificates involve the use of the Certificate Authority (CA), which
issues the certificates to the subjects (i.e., Grid users). The use of X.509 cer-
tificates therefore implies that each subject exchanging information trusts the
given CA; i.e., a CA acts as a trusted third party

X.509 certificates contain information about the CA as well as the subject.
They contain the subject’s name, along with his public key, the name of the
CA and other fields such as an ID of the encryption algorithms applied and
identifiers. The certificates are also signed by the CA so that users can verify
that the CA specified in the certificate actually issued the certificate; i.e., they
can get the public key of the CA and test if it matches the private key used
to sign the certificate. Private keys are also password protected by the user.
Certificates can be obtained in a number of ways depending on the particular
CA-approved mechanism. For examples, see [149] and [144].

GSI allows mutual authentication, i.e., allows two parties across the
Grid to prove to each other that they are who they say they are (for a detailed
overview of the underlying security techniques, see Chapter 8). Figure 4.5
illustrates how one person, B verifies that A is who she says she is. The steps
are as follows:

1. A sends B her public key.
2. B then verifies that the key being sent to him has been issued by the listed

CA in the certificate. This is achieved by checking the signature on the
certificate against the CA’s public key. (Note therefore that B has to trust
the CA.)

3. B then sends a random message to A and asks A to encrypt this message.
4. A then encrypts this message using her private key and returns this mes-

sage to B.
5. B then uses A’s public key to decrypt the message. If the message is the

same that was sent then B is sure that A is identified (since A is the only
person that can have her private key).
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Fig. 4.5. Shows how a person verifies that the person with whom they are commu-
nicating is who she says she is; used for mutual authentication in Globus.

6. the exact same operation is then performed by A to verify that B is who
he says he is.

Delegation is achieved in Globus by the use of proxy certificates. Proxy
certificates are temporary certificates that are generated on the fly from a
person’s identity but bypass the need for password-protected private keys.
Specifically a proxy consists of a new certificate containing a new public and
private key. The new certificate is signed by the owner rather than the CA,
which creates a chain of trust ; i.e., the proxy is verified and trusted because
it is signed by the certificate owner and the certificate is trusted because it
is signed by the CA. For a detailed overview of the security mechanisms, see
the Globus GSI Web page [144].

4.7.3 Information Services

The Monitoring and Discovery Service (MDS) is the collective interface to
the various information services that are provided by Globus. Each of the
information services can be accessed separately but MDS integrates these to
provide a standard mechanism for publishing and discovering resource status
and configuration information. This is a good example of the Globus hour-
glass approach to software writing (see Fig. 4.6). In their model, the Globus
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Fig. 4.6. The hourglass approach to Globus tool development.

toolkit components (e.g., MDS, GRAM, etc.) provide an API for many un-
derlying components and Grid protocols. Therefore, MDS here is the neck of
the hourglass that has applications and higher-level services or tools above it
and the lower-level mechanisms (e.g., local monitoring services) below it.

MDS consists of three main components, illustrated in Fig. 4.7:

1. GRIS (Grid Resource Information Servers) that collect data on
each resource and can be located on a well-known port (i.e., 2135).

2. IP (Information Providers) which provide the interface between local
data collection service and the GRIS servers.

3. GIIS (Grid Index Information Services) that collect information
from one or more GRIS servers and act as a lookup service for resource
information.

Briefly, data flows from the local data collection services to the IPs, along
to the GRIS servers and then are finally collected by the aggregate directory
service, GIIS. IPs can collect data from a variety of sources, e.g., current load
status, operating system type and version, file system information (e.g., free
disk space, etc.), RAM and virtual memory levels. There can be several local
data providers connected to one GRIS server, each interfaced through an IP
as illustrated. Further, there can be several GRIS servers registered with one
GIIS server and so on.

Therefore, when a request arrives at the GIIS, the GRIS checks its local
cache and if the information is not there, or out of date, then it invokes the
IP to gather the data and pass it along up the chain. For more information,
see the Globus Information Services Web page [146].

4.7.4 Data Management

Data management in Globus consists of three distinct components:
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Fig. 4.7. An overview of the protocols you use within MDS.

• GridFTP: an extended version of the IETF’s FTP (File Transport Pro-
tocol). It is secure; i.e., it authenticates via GSI security and adds new
features, such as parallel data transfer, partial file transfer and server-to-
server (i.e., third-party) data transfer. GridFTP is downloadable from the
Web site [147] as an SDK (software development kit). There is also a com-
munity effort GGF GridFTP working group that focuses on improving the
current GridFTP protocol [150].

• Data Replication: consists of a Replica Catalog component and a Replica
Management tool. The Replica Catalog is a lookup directory that contains
mappings between logical names for files and one or more copies of the files
located on physical storage systems across the Grid. The Replica Manage-
ment tool integrates this catalog and GridFTP to keep track of and repli-
cate data files. Such tools are important for certain science experiments
where either the data cannot be stored completely at one location or when
a number of groups collaborate on data analysis and they need to obtain
efficient access to the data files. Such data therefore would be replicated
and moved closer to where the various groups perform the analysis.

• GASS: the Global Access to Secondary Storage system allows remote
access to data via standard protocols. GASS includes both client libraries
(for accessing remote files) and a server (which acts as a limited file server).
Data therefore can be accessed by specifying a URL, in the form of an
HTTP URL or an x-gass URL when an HTTP server is not accessible.

For more information, see the Globus Data Management Web page [147].
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4.7.5 Resource Management

The Globus Resource Allocation Manager (GRAM) is used to allocate and
monitor remote resources. The main component of GRAM is a server process,
called the Gatekeeper, which typically runs on the machine on which the user
wants to run a job. The Gatekeeper has the responsibility to authenticate the
user and then satisfy the request2. Job requirements are specified using the
Resource Specification Language (RSL). GRAM uses GASS to download the
executable, to move stdin/stdout/stderr and access files to and from remote
locations.

User

Gatekeeper

GRISJob

Job

Manager

Remote

Machine

Job

Submission

Create Manager

for Job
Monitoring

Information
Execute

Job

Fig. 4.8. An overview of how GRAM submits and monitors jobs.

Briefly, when a job is submitted in RSL to GRAM, the request is sent to
the Gatekeeper for the remote computer (see Fig. 4.8). The gatekeeper then
creates a job manager for the job, which starts and monitors the job during its
lifetime. The job manager is the interface to the user and communicates state
changes during the running of the job. Then, when the remote job terminates
(either normally or by failing), the job manager terminates also. For more
information, see the Globus Resource Management Web page [145].
2 In fact, the Gatekeeper is really part of the security infrastructure, which checks

the credentials and changes the user ID to the mapped user before running the
specific service. However, the only services ever implemented to work with this,
at the time of writing, were GRAM and GARA.
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Globus has evolved from the I-Soft system, through version 1 (GT1) to
version 2 (GT2) and recently, its emphasis has moved from supporting just
high-performance applications towards supporting more pervasive services
that can support virtual organizations. This evolution is continuing through
OGSA (GT3), which is based on exposing its functionality as Web services;
see Chapter 14.

4.8 Comments and Conclusion

Grid computing provides an infrastructure for wide-area distributed comput-
ing. The Grid process is a community-driven process (the GGF has a great
deal of support) and its focus is to encapsulate and expose this functionality
through standard open protocols and services. For example, in the P2P chap-
ters (see Chapters 2, 6, 7 and 9), the focus was on a much more top-down view;
that is, let’s look at what infrastructure and connectivity exists in today’s In-
ternet and adapt a specific ad hoc protocol that will work with a specific
application. This is addressed somewhat by Jxta (Chapter 10) but again Jxta
does not work with standardized protocols; they are simply Jxta protocols,
which were specified by Sun and a small number of other companies. This is
not to say that the Jxta protocols are bad, in fact, they are extremely insight-
ful, but without widespread agreement, which can lead to standardization, it
is more difficult to gain widespread adoption (but not impossible).

The Grid approach is much more a bottom-up approach. The Grid com-
munity is focused on not only creating the necessary standards which have
widespread agreement and standardized protocols but also on building the
low-level infrastructure to provide a secure computing environment for ac-
cessing distributed resources. For example, within a Grid computing envi-
ronment it is possible to schedule the execution of a piece of your code on
a distributed resource, which is something that requires a concrete security
policy as well as the technical specification of how you describe what it is
you wish to execute and how this is accomplished (via environment variables,
etc.). The core toolkit, Globus, tackles a number of these key issues including
security, job submission, resource allocation, reliable (and fast) file transfer,
data replication and information systems.

This chapter has outlined the concepts behind Grid Computing. Anal-
ogous to the power grid, Grid computing is aiming to provide computing
resources as a utility, just as gas and electricity are provided to us now. To
this goal, the underlying infrastructure needed to support this kind of inter-
action has evolved from middleware, such as I-Soft that supports wide-area
high-performance computing to Globus 1 and 2, which introduces more inter-
operable solutions. In Chapters 13 and 14, we’ll see how these technologies
move to a more service-oriented approach (see Section 3.3) that exposes the
Grid protocols using Web service standards (e.g. WSDL, SOAP etc), in the
form of OGSA.
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This continuing evolution is bringing us closer to systems for production
Grids capable of running a wide range of applications. Key to this integration
is the concept of virtual organizations that make it easier to establish cross-
organizational sharing relationships. Today, Grids have three main properties;
that they coordinate resources that are not subject to centralized control ;
use standard, open, general-purpose protocols and interfaces; and deliver non-
trivial qualities of service.



Part II

Middleware, Applications and Supporting
Technologies



81

In this theme, we take a look at middleware and applications, along with
the supporting techniques that make these possible. We first take a look at
a distributed-object based system, called Jini, which provides an overview of
some of the underlying techniques that have been used to support distributed
systems development (Chapter 5).

We then revisit peer to peer by taking a look at Gnutella, a system that
popularised and helped redefine P2P, through its novel decentralised search
protocol (Chapter 6). We show how such a model can be efficiently scaled,
though the introduction of caching peers, and discuss the advantages and
disadvantages of such an approach (Chapter 7).

To set the scene for the last two chapters within this theme, security within
distributed systems is introduced (Chapter 8). We then show how many of
these security and P2P techniques discussed so far have been used within a
real-world system called Freenet (Chapter 9). By generalizing on these ideas,
Jxta is introduced, which attempts to provide a middleware infrastructure for
programmers by creating a P2P overlay (Chapter 10).
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Jini

This chapter gives an overview of Jini, thereby providing an example of a well-
known distributed-object based system. Jini is similar in concept to industry-
pervasive systems such as CORBA [126] and DCOM [127]. It is distinguished
by being based on Java, and deriving many features purely from this Java basis
(e.g., the use of RMI and Java serialization). There are other Java frameworks
from Sun which would appear to overlap Jini, such as Enterprise Java Beans
(EJBs) [16]. However, whereas EJBs make it easier to build business logic
servers, Jini could be used to distribute these services in a network plug-and-
play manner.

In this chapter, a background is given into the development of Jini and into
the network plug-and-play manner in which Jini accesses distributed objects.
Specifically, Java RMI is discussed, which forms the transportation backbone,
along with Java serialization. The discovery of Jini services is described and
the notion of a Jini proxy is introduced.

Jini implements three protocols that allow a service provider to register its
service, a client to search for the service and both a client and service provider
to discover the Jini look up server. The Jini look up server is central to the
control of the Jini environment as it coordinates the discovery and registration
of Jini objects. Jini runs a brokered architecture however, in that the discovery
is centralized through the look up service but the communication thereafter
between the client and the service is direct.

Finally, Jini advanced issues, such as leasing and distributed asynchronous
events are discussed. In the following chapter, an overview of how to set the
Jini runtime up and how Jini services are deployed using a simple application
illustrates how these individual parts fit together.
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5.1 Jini

5.1.1 Setting the Scene

Historically, operating systems have been designed with certain assumptions;
that a computer will have a processor, some memory and a disk. When a
computer is booted, it looks for a hard disk and if it can’t find one then it
cannot function.

In more recent times however, computers are used within different scenar-
ios and have fundamentally different roles. For example, a mobile phone does
not contain a hard disk but it does have a processor, some memory and a
network connection and when it boots up, rather than searching for a disk, it
looks for the telephone network. If a network cannot be located then it can’t
function as a mobile phone. This growing trend from disk-centric to network-
centric within a wide range of embedded devices radically affects the way we
organize software.

The main emphasis of Jini [78], [79] is to place the emphasis back onto
the network and attempt to provide an infrastructure that would enable the
many varied processors in devices that have no disk drive to operate and locate
services. Jini therefore provides mechanisms to enable adding, removing and
locating devices and services on the network.

In addition, Jini provides a programming model that makes it easier for
programmers to get their devices talking to each other. Jini builds on top of
Java, object serialization and RMI (see next section) to enable objects to move
around the network from virtual machine to virtual machine and extend the
benefits of object-oriented programming to the network. Instead of requiring
device vendors to agree on the network protocols through which their devices
can interact, Jini enables the devices to talk to each other through interfaces
to objects. First, let’s look some of the technologies that Jini integrates in
order to implement this distributed mechanism.

5.2 Jini’s Transport Backbone: RMI and Serialization

Although Jini can be implemented using more verbose networking communica-
tion techniques, e.g., XML-based message passing [81], most Jini applications
sit on top of two of the core Java technologies implemented in the Java SDK,
that is, RMI and the Java serialization of Objects.

If you are using the core Java SDK you have the following options for
communicating across a network:

1. Sockets: these are one-to-one, duplex connections. With sockets you need
to pack data for a socket and unpack it on other side; i.e., you also need
to agree on predefined format and internal data protocol.
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2. RPC (Remote Procedure Call): this abstracts the communication
interface to the level of a procedure call. The programmer appears to
be calling a local procedure but the procedure is hosted remotely. The
arguments and return values are serialized using an external data repre-
sentation, e.g., XDR.

3. RMI (Remote Method Invocation): this is similar to RPC but in Java
it uses the Java serialization mechanism to pack objects for transportation.

5.2.1 RMI

RMI is a tightly coupled communication technology that requires an appli-
cation to know a remote application’s methods. Other more loosely coupled
communication mechanisms (e.g., Jxta pipes, JMS etc.) are discussed else-
where (see Chapter 10 and the JMS Web site [14]). RMI provides the mech-
anism by which the server and the client communicate and pass information
back and forth and therefore allow Java objects to be distributed across a
network.

RMI

Service

2. Create an

Implementation of

remote SendMessage

interface

1. Create a Remote

Java Interface e.g.

SendMessage

public void sendMessage(String message);

5. Returns data from

remote call (if any)

RMI

Client

3. Create Client side class

to call remote method,

sendMessage(“message”)

4. Call remote method

by using proxy

known as the Java Proxy

to the remote code

Fig. 5.1. An overview of remote method invocation (RMI).

RMI applications consist of two separate programs: a server and a client.
The server application creates a number of remote objects (implementing
different services), creates local references for them, and then waits for clients
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to invoke methods on these remote objects. The remote objects are created
by a two-stage process:

1. by implementing a proxy (using a Java Interface)to the remote code (see
Fig. 5.1, stage 1);

2. then, implementing this proxy in a class that is stored on the RMI server
(see Fig. 5.1, stage 2).

A client application then gets a remote reference (i.e., the proxy interface
defined for the remote object) using one of the following methods:

• an application can register its remote objects with RMI’s simple naming
facility, the rmiregistry application;

• or the application can pass and return remote object references as part of
its normal operation.

These rather simple mechanisms of discovering remote reference to ob-
jects is where Jini, described in the next section, improves on the basic RMI
functionality. It achieves this through the use of a Jini Lookup Service (LUS),
which is a third party application that is used to register the location of remote
objects. Incidentally, the LUS is a bit like a Napster server or a super-peer in
Gnutella except that these store references to the locations of remote files and
an LUS stores the location of remote Java objects (which in fact, also could
be Java references to a file...).

Once a client gets the reference to the remote object, it uses its local copy
of the Java proxy to invoke the remote method (see Fig. 5.1, stages 3 and 4)
and RMI takes care of the rest. Within RMI, details of the communication
between remote objects are completely handled by RMI; i.e., to the program-
mer, remote communication looks like a standard Java method call. So how
does RMI transport the data across the network automatically?

5.2.2 Serialization

Fundamental to RMI’s transport mechanism is the Java Serialization mecha-
nism, which is used to transport any object that is passed as a parameter to or
returned from a remote function. RMI uses the object serialization mechanism
to transport objects by value across the network and between different Java
Virtual Machines (JVMs). Serializable classes are capable of being able to be
converted into a self-describing byte stream that can be used to reconstruct
an exact copy of the serialized object when the object is read back from the
stream. Therefore, serialization can be used to store an object’s state in such
a way that later it can be completely reconstructed.

Serialized Java objects can be stored to a disk file (for persistence), can
be transferred across the network using a socket and can be used within a
third party mechanism behind the scenes in order to transparently (to the
programmer) pass objects between networked devices as in Jini (see Fig. 5.2).
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Fig. 5.2. Java serialization can be used to transport a Java object across a network
or to store it to local disk for persistence.

In Java, the default serialization mechanism stores all (non-transient) data
members of a class to a set of bytes, typically stored into a stream. This stream
can then be passed across a network or stored to a local disk file. Note that
serialization does not store the actual class bytecode; rather, it stores the
name of the class needed in order to reconstruct the object. In this way, Java
serialization with respect to actual classes is more of a dependency rather than
part of the core serialization mechanism. In Java, there are two methods of
serializing a class, by implementing either one of the following Java Interfaces:

1. java.io.Serializable: simple default mechanism, where only minimal
modification to the code is necessary

2. java.io.Externalizable: implements a custom serialization policy. Using
the Externalizable interface, you can specify precisely what, and how, you
want to store and retrieve the information contained within the class.

Here, the default mechanism will be briefly illustrated using some simple
Java code. For details of the Externalizable interface and its use, please take a
look at the Java Tutorial [82]. Figure 5.3 illustrates, using a simple example,
how you mark a class serializable. In Java, this is achieved by making the
class implement the java.io.Serializable interface, which basically tags the
class as being able to be serializable to the JVMs. The JVM does the rest and
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import java.io.Serializable;

public class PersistentClass implements Serializable  {

    private String name;

transient private String notToCopy;

    public PersistentClass() {

        notToCopy = “whatever”;

        name = “My persistent String”;

    }

}

To implement

default

serialization

To tag instance

variables which

should not be

serialized

Fig. 5.3. A simple code fragment that shows how you make a Java class serializable
and how you would exclude certain instance variables by using the transient key
word.

serializes every instance variable (whether it be a simple variable, i.e., an int,
double, an array, i.e., double[] or even an object). Java recursively serializes
every variable by decomposing it into its constituent parts and applying the
same procedure on them. To tell the JVM you do not want it to serialize an
instance variable, you use the transient keyword (see Fig. 5.3).

The code in Fig. 5.4 shows how one would serialize any Java object to
a file. In this example, we create a Java file output stream (so we can write
to a file) and then stream an object output stream into this file, into which
we can write our serialized Java objects. Using the same mechanism, this
object output stream could be plugged into a different storage or networking
device other than a file, e.g., a socket, etc. To serialize today’s date therefore,
we create a new Date object (i.e., new Date()) and write this object to our
object output stream, which in turn gets written to the file.

To load this serialized object back in from the file, we perform the inverse
operation; that is, we create a Java file input stream and attach an object input
stream to this in order to convert the contents of the file and to deserialize
them into a collection of Java objects (see Fig. 5.4). The readObject() function
returns a Java Object but since we know we have stored a Java Date object
previously, we can typecast this into what it should be.
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Serialize today's date to a file:

FileOutputStream f = new FileOutputStream("tmp");

ObjectOutputStream s = new ObjectOutputStream(f);

s.writeObject(new Date());

s.flush();

Deserialize today's date from a file:

FileInputStream in = new FileInputStream("tmp");

ObjectInputStream s = new ObjectInputStream(in);

Date date = (Date)s.readObject();

Fig. 5.4. A Java code fragment that serializes a serializable Java object
(java.util.Date) to a File output stream for persistence.

This simple mechanism (from the programmer’s side anyway...), provides
a powerful way of being able to transfer objects or persist their state. Java
serialization is used extensively and RMI, for the programmer, abstracts such
communication to a higher level, that is, at the method level. Therefore, within
RMI, you have to tag your objects as serializable but then thereafter you
simply invoke Java methods and the associated argument objects that are
passed across the network are handled for you by the RMI subsystem.

In the next section, a brief overview of Jini is given, which is followed by
a detailed description of each part.

5.3 Jini Architecture

Jini has a brokered architecture, discussed in Chapter 1, which will become
apparent in the following overview.

Jini is a set of APIs and network protocols that can help you build and
deploy distributed systems that are organized as federations of services. A ser-
vice is a network-enabled entity that performs some function. Some examples
of services include hardware devices (such as printers, scanners, hard drives,
etc.), software, communications channels and even human users themselves.
For example, a Jini-enabled disk drive could offer a “storage” service and a
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Fig. 5.5. A Jini federation

Jini-enabled printer could offer a “printing” service. The federation of services
is a set of available services on the network that a client can utilize to help
accomplish some goal.

Therefore, to perform a task, a client enlists the help of services. For exam-
ple, a client program might upload an image from a scanning service, download
this to a disk drive via a disk-drive service, and send it to the printing service
of a colour printer. In this example, the client program builds a distributed
system consisting of itself, the scanning service, the disk-drive storage service
and the colour-printing service. The client and services of this distributed
system work together to perform this task.

The concept of a Jini federation (see Fig. 5.5) reflects that the Jini net-
work does not involve a central controlling authority and therefore the set of
all services available on the network forms a federation. Jini’s runtime infras-
tructure provides a mechanism for clients and services to find each other by
using a lookup service that stores a directory of currently available services.
Such a directory service allows a client to broker the task to a service available
on the network.

Once services locate each other, they thereafter communicate directly and
are independent of the Jini runtime infrastructure. This architecture is there-
fore brokered and similar in mechanism to systems such as Napster (see Sec-
tion 2.3.1), although differing in functionality. As in Napster, if the Jini lookup
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… and the network connecting all three 
- generally running TCP/IP

a service, such as a

printer, scanner,

storage device, a

software service etc.

a client which

would like to

make use of this

service.

a lookup service

(LUS) - a service

locator

Fig. 5.6. The three players in a Jini system.

service crashes, any clients or servers brought together via the lookup service
before it crashed can continue their work.

5.3.1 Jini in Operation

Jini defines a runtime infrastructure that provides mechanisms that enable you
to add, remove, locate and access services. Briefly, in a running Jini system,
there are three main players (see Fig. 5.6):

1. There is a service, such as a printer, scanner, storage device, a software
service, etc.

2. There is a client which would like to make use of this service.
3. And there is a lookup service (LUS). This essentially is a service locator

that acts as a broker/trader/locator between services and clients.

Of course, there is also an additional component, and that is a network con-
necting all three of these, and this network will generally be running TCP/IP.
(Note that the Jini specification is fairly independent of network protocol, but
the only current implementation is on TCP/IP).

When new services become available on the network, they register them-
selves with a lookup service. When clients wish to locate a service to assist
with some task, they consult a lookup service.
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the network (TCP/IP)

Jini Service Jini Client

(Consumer)

LUS – Lookup

Service

1. Jini service

discovers LUS

and registers its

service

2. Jini client

discovers LUS

and locates the

desired Jini

service

4. Jini client uses

proxy to contact

Jini service directly

3. Jini client

receives Java proxy

for Jini Service

Fig. 5.7. Broad overview of Jini in operation.

The scenario of using Jini services is given in Fig. 5.7 and has the following
steps:

1. The Jini service uses discovery (see Section 5.4.1) to locate the LUS and
then registers its service with the LUS for use on the Jini network.

2. The Jini client uses discovery (see Section 5.4.1) to locate the LUS and
then uses the LUS to find the particular Jini service(s) it wishes to use.
The lookup service then returns information to the client (a proxy, see
below), which allows the client to contact the service directly.

3. Thereafter, the client and service exchange information directly and the
lookup server is no longer required.

Code is moved around among these three pieces, and this is done by mar-
shalling the objects. This involves serializing the objects in such a way that
they can be moved around the network and later reconstituted (deserialized)
by using included information about the class files as well as instance data as
discussed in Section 5.2.2.

Much of the power of Jini comes from the core nature of Java, that is, the
ability to download bytecodes from the network and execute them locally, just
as you do each time you use an applet. In Jini, services are always accessed
via an object that is provided by the service itself, called a proxy (as in RMI;
see Section 5.2.1). The client downloads this proxy from the lookup server and
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makes calls on this object just as it would on any other RMI object, in order
to use the service.

In some ways, Jini proxies are analogous to Java applets. Applets provide a
mechanism to acquire and use a remote application locally, while Jini proxies
provide the same feature for the Jini services. You need to know the Web page
to access the applet, whereas you need to know the Jini lookup server and
service description to use the particular Jini service. However, typically applets
are meant for human consumption, i.e., providing GUIs for Web browsers
whereas Jini services are designed to be used programmatically. Further, Jini
services are typically used remotely whereas applets are always run locally.
Jini services are essentially network aware, on-demand device drivers. The
way proxies interact with the service is up to the creator of the service proxy.
Here are some possibilities:

1. The proxy performs the service itself: This is very similar to an
applet: the Java proxy code is downloaded to the client and the client
executes the function directly on the downloadable object. When it is
executed, the object is completely self-contained and does not require any
remote functionality.

2. The proxy is an RMI stub for a remote service: Here, the proxy is
a minimal piece of code which is an interface to the remote object. The
client makes a call on the proxy object; then RMI transfers this call and
arguments to the remote object on the service provider, where the actual
execution is made.

3. The proxy acts as a smart adapter: Here, the proxy contains enough
code to be able to make decisions about how to execute the functionality. It
could use whatever communication protocol it likes, e.g., sockets, CORBA,
Jxta, etc. to broker the request to a remote service. Under this scenario,
Jini services can gain access to hardware devices that have their own
communication protocol or contact Jini services that are written in other
programming languages.

5.4 Registering and Using Jini Services

The Jini runtime infrastructure defines one network-level protocol, called dis-
covery, and two object-level protocols, called join and lookup. Briefly, discov-
ery enables clients and services to locate lookup services, join enables a service
to register itself in a lookup service and lookup enables a client to query a
lookup service for available services.

5.4.1 Discovery: Finding Lookup Services

Discovery is the Jini mechanism that allows both clients and services to locate
Jini lookup services. For a service provider, this allows their services to be
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registered with this LUS and made available to Jini clients/users. For a client,
this enables the lookup of available Jini services on the network for use within a
particular application. There are two ways of discovering Jini lookup services,
by:

1. The Unicast Discovery Protocol: is used when the client or service
already knows the location of the LUS, e.g., jini://spectra.astro.cf.ac.uk.
This specifies the lookup service running on the host spectra.astro.cf.ac.uk
on the default port (note that Jini uses its own protocol for this). Unicast
lookup is used when static connections are needed between services and
lookup services.

2. The Multicast Request and Announcement Protocols: uses multi-
cast to a local (or well known) network. As soon as a Jini service connects
to the network, it broadcasts a presence announcement by sending a mul-
ticast packet onto a well-known address. Included in this packet is an IP
address and port number where the Jini service can be contacted by a
lookup service. Lookup services monitor this port using a multicast re-
quest for appropriate packets and when received, a lookup service makes
a TCP connection to the IP address and port number extracted from the
packet.

When the lookup service is contacted, it uses RMI to send an object (called
the service registrar, net.jini.core.lookup.ServiceRegistrar) to the Jini service
provider. The service registrar object facilitates further communication with
the lookup service. It can return information about the available Jini groups,
service identifiers (for Unicast lookup), notification (for asynchronous discov-
ery of new services) and last, services can use the join protocol and clients
can use the lookup protocol, as described in the next two sections.

5.4.2 Join: Registering a Service (Jini Service)

Once a Jini service provider has obtained a service registrar object, it can
join the federation of services that are registered with the particular lookup
service. To join, the service provider invokes the register() method on the
service registrar object (see Fig. 5.8).

There are two parameters to register: a parameter object called a Servi-
ceItem and a lease duration. The service item is defined as follows:

ServiceItem(ServiceID id, Object service, Entry[] attrSets)

• id: universally unique identifier (UUID) for registered services (128-bit
value). Service IDs are intended to be generated only by lookup services,
not by clients.

• service: the object implementing the actual Jini Service, i.e., the Java
proxy object.
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Fig. 5.8. Jini Services use the register() function of the ServiceRegistar object to
join the Jini network.

• attrSets: attribute sets include extra information about the service. Ex-
amples of these are: icons; classes that provide GUIs for the service; and
objects that give more information about the service.

The leaseDuration variable is used by Jini lookup services to keep track of
active Jini services. The lease duration can be specified by the service itself
or by the lookup server. Services can therefore choose either of the following
defaults or set this duration themselves:

• Lease.ANY: the service lets the lookup service decide on the time
• Lease.FOREVER: the request is for a lease that never expires.

Leasing is a way for components to register that they are alive, but allow
themselves to be “timed out” if they have failed or if they are unreachable.
The lookup service acts as the granter of the lease.

The register() method sends a copy of the ServiceItem object (using RMI)
to the lookup service, where the service item is stored. This completes the
join process and its service is now registered in the lookup service.
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5.4.3 Lookup: Finding and Using Services (Jini Client)

Once a service has registered with a LUS service via the join process, it is
available for use by clients who query that lookup service. To find a service,
clients query lookup services via a process called lookup.

First, a client discovers a lookup service and obtains a service registrar
object, as described. It then invokes the lookup() method on this object to
perform a lookup:

Object lookup(ServiceTemplate tmpl)

The client passes a ServiceTemplate argument to lookup(), which is a ob-
ject containing the search criteria for the query. The service template can
include a reference to an array of Class objects. These objects indicate to
the lookup service the Java type (or types) of the service object desired by
the client. The service template can also include a service ID, which uniquely
identifies a service, and attributes, which must exactly match the attributes
uploaded by the service provider in the service item. Attributes can contain
a plaintext string for describing a service, e.g., “Epson 880 Service”.

The ServiceTemplate can also contain wildcards for any of these fields.
A wildcard in the service ID field, for example, will match any service ID.
The lookup() method sends the service template to the lookup service, which
performs the query and returns the matching service objects. The client gets
a reference to the matching service objects as the return value of the lookup()
method.

public interface JiniPrinter {

    /**

     * Print the document contained in the given String or

     * throw a PrinterException explaining why the call failed

     */

    public void print(String text) throws PrinterException;

}

public class LaserPrinter implements JiniPrinter {

    public void print(String text) throws PrinterException {

// implement Laser-specific code here or throw exception

    }

}

Fig. 5.9. A simple example of how one might build a searchable Jini hierarchy for
a definition of any printer.
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In most cases, a client looks up a service by using a Java type, typically
specified using a Java interface. For example, if a client wanted to use a printer,
it would compose a service template that included a Class object for a well-
known interface to printer services. All printer services would implement this
well-known interface. For example, something like the code in Fig. 5.9 might
be constructed to provide a generalized interface that could be implemented
for any printer, whether it be a laser printer (as shown) or any other printer
type.

The lookup service would return a service object (or objects) that imple-
mented this JiniPrinter interface. Attributes can be included in the service
template to narrow the number of matches for such a type-based search. The
client would use the printer service by invoking the service object’s methods
declared in the printer service interface (in this case the print() method).

5.5 Jini: Tying Things Together

the network (TCP/IP)

Jini Service Jini Client

(Consumer)

LUS – Lookup

Service

1. Jini service

discovers LUS

(Discovery)

and registers

its service (Join)

2. Jini client

discovers LUS

(Discovery) and

locates the

desired Jini

service (Lookup)

4. Jini client uses

proxy to contact

Jini service directly

3. Jini client

receives Java proxy

for Jini Service

Fig. 5.10. An enhanced Jini example illustrating which Jini protocols are used at
each stage of the scenario given in Fig. 5.7.

In summary therefore, in this section we insert the protocols and the rel-
evant Java objects that are used at each stage of the Jini scenario given in
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Fig. 5.7. In Fg. 5.10, the actual Jini protocols that are used by the three main
Jini components are illustrated. For example here, when either the client or
the service contacts the Jini LUS, it uses the discovery protocol; when the
service wishes to add its service to the list of available Jini services, it uses
the join protocol on the LUS; and finally, when the client wishes to search for
available services that match its search criteria, it uses the lookup protocol.

service (returns

Java proxy)

3. invokes
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ServiceRegistrar

object to

register

service

2. receives a
ServiceRegistrar

object

Jini Service

LUS

1. Jini service
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ServiceRegistrar

     object

4. Jini service
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ServiceRegistrar to

locate desired

Jini Client

Fig. 5.11. An even more enhanced Jini example illustrating the Java objects along
with the Jini protocols used at each stage of the scenario given in Fig. 5.10.

To enhance this scenario, we now add the actual Java objects that are
involved at each stage of this process (see Fig. 5.11). This figure is a good
overview of the entire Jini process. In Chapter 11, we will see how this is
implemented and deployed within a Jini environment. Figure 5.11 gives a
detailed scenario for our print example introduced in the previous section and
has the following stages:

1. The Jini service uses discovery to locate the LUS, either by using multicast
or unicast discovery.

2. The LUS returns a ServiceRegistrar object.
3. The Jini service can now use the ServiceRegistrar’s register() function to

register its print service with the LUS.
4. The Jini client uses discovery to locate the LUS, again either by using

multicast or unicast discovery.
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5. The LUS returns a ServiceRegistrar object.
6. The client uses the ServiceRegistrar’s lookup() function to search for the

LaserPrint service required.
7. The client receives the Java proxy (the LaserPrint interface).
8. The client executes the LaserPrint’s print, which results in a remote

method invocation of an implementation of the LaserPrint interface, which
is connected to the remote printer and therefore the text is printed.

5.6 Organization of Jini Services

Jini communities are called groups, and during the discovery process, a service
or client can specify the groups it wishes to find. The discovery protocols will
then return any LUS services that are members of those groups. Therefore,
grouping in Jini is based around the Jini LUS services.

An LUS can be a member of many groups and in most cases communities
and groups can be thought of as the same things. Groups are simply the name
used to represent communities. The most important distinction is that, due
to network separation, different communities may have the same group name.
Therefore, groups are not globally unique, nor are they necessarily globally
accessible.

5.6.1 Events

Jini objects may also be interested in state changes in other Jini objects, and
would like to be notified of such changes. The networked nature of Jini has
led to a particular event model which differs slightly from the other models
already in Java. Jini essentially extends the Java event model to work in
a distributed environment. There are several factors which led to this new
event model design, such as: messages maybe lost due to network delivery and
therefore synchronous methods will fail; network delivery may delay events so
events may appear in a different order than intended; and a remote listener
may have disappeared by the time the event arrives so there needs to be a
time-out mechanism.

Jini typically uses events of one type, the RemoteEvent or a small number
of subclasses and conveys just enough information to allow state information
to be found if needed. A remote event is serializable and can be moved around
the network to its listeners.

In a synchronous system an interaction has the precise state and order of
events. In a network system this is not so easy. Jini makes no assumptions
about guarantees of delivery, and does not assume that events are delivered
in order. The Jini event mechanism does not specify how events get from
producer to listener (but are typically implemented by RMI calls).

The event source supplies a sequence number that could be used to con-
struct state and ordering information if needed. This generalizes things such as
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timestamps on mouse events. For example, a message with id of ADD NODE
and sequence number of 3 could correspond to the state change “added
MIME type text/xml for files with suffix .tbx”. Another event with id of RE-
MOVE NODE and sequence number of 4 would be taken as a later event
even if it arrived earlier. The event source should be able to supply state
information upon request, given the sequence number.

5.7 Conclusion

This chapter discussed the use of Jini for distributing Java objects across
a network. First, an overview of RMI was given, which is the underlying
communication technology that Jini builds upon to provide a network plug-
and-play capability for distributed objects.

There are three main players in Jini: a service, such as a printer, scanner,
storage device, a software service, etc.; a client which would like to make use
of this service; and a lookup service that is a service registration and lookup
facility.

Jini clients and services discover an LUS by using the discovery protocol.
Services join a Jini federation (collection of Jini services) by using the join
protocol and clients locate services by using the lookup protocol. These con-
cepts are illustrated through the use of a simple scenario which outlines the
various Jini protocols and how one uses the Java objects that are used to
implement these protocols.
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Gnutella

Gnutella defined and popularised modern P2P technology through its truly
decentralized design and implementation. It arrived right around the time
when centrally organized solutions were being targeted and provided a mech-
anism that offered a much more tolerant structure, where no single entity
could be isolated to bring down the entire network. The Gnutella network
consists of thousands of information providers, which are not indexed in a
central place. Therefore, to shut down such the network is not trivial since a
vast number of peers (i.e., many hundreds) would have to be eliminated.

This chapter provides an overview of the original 0.4 version of the Gnutella
network. It combines a conceptual overview and a user-friendly rewrite of
the Gnutella protocol specification [47]. An historical perspective is provided,
along with usage scenarios, which include joining and searching the Gnutella
network. This is followed by a detailed account of its protocol specification that
provides the fundamental information required for a competent programmer
to build a Gnutella network from scratch.

6.1 History of Gnutella

Gnutella was born sometime in early March 2000. Justin Frankel and Tom
Pepper, working under the dot-com pen name of Gnullsoft [9], are Gnutella’s
inventors. Their last life-changing product, Winamp [7], was the beginning
of a company called NullSoft [8], which was purchased by America Online
(AOL) in 1999. Winamp was developed for playing music files. According to
Tom Pepper, Gnutella was developed primarily to share cooking recipes.

Gnutella was developed in just fourteen days by two guys without college
degrees. It was released as an experiment but was then abruptly stopped by
AOL shortly afterwards (see [10] and [11]). It was supposed to be released as
Version 1.0 under the GNU General Public License but never actually grew
beyond version 0.56. The Gnutella name is a merging of GNU and Nutella
(see Fig. 6.1). GNU is short for GNU’s Not Unix, open source developing and
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The ‘Animal’ GNU: Either of two

large African antelopes (Connochaetes

gnou or C. taurinus) having a drooping

mane and beard, a long tufted tail, and

curved horns in both sexes. Also called

wildebeest.

Gnutella =

GNU: Recursive Acronym

GNU’s Not Unix…

+
Nutella: a

hazelnut chocolate

spread produced by

the Italian

confectioner

Ferrero ….

GNU

Nutella

Fig. 6.1. The Gnutella name explained with animals and all....

Nutella is a hazelnut chocolate spread produced by the Italian confectioner
Ferrero, which the authors liked...

Just as Gnutella was about to disappear, open source developers intervened
and Bryan Mayland reverse-engineered Gnutella’s communication protocol
and released the findings on the http://gnutella.nerdherd.net. This site hosted
the protocol documentation but also hosted a link to Gnutella’s Internet Relay
Chat (IRC) channel #gnutella, which had a massive response and significantly
affected the future development.

6.2 What Is Gnutella?

Gnutella is a protocol for a distributed search. In this model, every peer in
the network is both a client and a server. This is illustrated in Fig. 6.2. These
so-called Gnutella servents (server + client) provide client-side interfaces
through which users can issue queries and view search results, while at the
same time they also accept queries from other servents, check for matches
against their local data set, and respond with applicable results. Due to its
distributed nature, a network of servents that implements the Gnutella pro-
tocol is highly fault tolerant, as the operation of the network as a whole is not
affected if a subset of servents goes off line.
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Fig. 6.2. Gnutella terms defined.

Each Gnutella node is connected to a small number of other Gnutella
nodes (typically around four) and such connections are formed on a random
ad hoc basis depending on where new peers happen to join the network. This
structure is shown in Fig. 6.3, which illustrates the flat nature of the Gnutella
network. Gnutella nodes have no central lookup service or caching servers and
therefore only see other peers to whom they are connected.

Therefore, when a peer wishes to search the network for a file it has to ask
its neighbours. Requests are answered if the peer has a copy of the requested
file otherwise they are forwarded to all its connected peers, and so on. In this
way, the network is flooded with a request in an inherently massively parallel
fashion, which in theory should result in ultra fast searching. Well it does,
but in practice of course, the amount of traffic that such a request generates
can often saturate the capacity of the network and leave little bandwidth
left for actually retrieving files, which defeats the point of the exercise! Such
limitations are discussed in great detail in the next chapter, but it is important
to understand the core Gnutella technology before understanding how these
issues are addressed.

As a consequence of this method of searching a network, the Gnutella
protocol defines a term to measure the number of nodes the packet travels
through before it reaches its destination. This term is referred to as the number
of hops, i.e., how many peers a request hops through (see Fig. 6.2).
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*
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Fig. 6.3. An illustration of a basic Gnutella network containing tens of nodes.

In practice, a real-world Gnutella network would not be as organized as
Fig. 6.3 due to the semi-random fashion that peers join the network and
discover other peers. It would almost certainly be the case that peers will be
connected in such a way that they will form loops. For example, peer A may
connect to peer B, which may connect to peer C , which may, in turn, connect
back to peer A. In this circumstance, it is important to make sure that the
request doesn’t loop indefinitely. For this reason, a unique identifier is attached
to the message so that peers can drop requests that they have already seen.
This is described in more detail in Section 6.3.3 but this principle is used in
all P2P searchable networks.

Networks of this nature can become incredibly large and therefore you
need a mechanism to limit the searchable area. For this reason, the Gnutella
specification includes a TTL (Time To Live, see Fig. 6.2) for the request. TTL
is also known as the Gnutella horizon, i.e., how far a packet can go before it
dies.

The “standard” TTL is 7 hops, so, how far is that? A 7-hop radius com-
bined with network conditions (i.e., 4 connections) means that around 10,000
nodes are reachable within a fully connected network. Another way to look
at a TTL is with an analogy of a “large crowd” i.e. when you’re in a large
crowd (e.g., a rock/pop concert, a demonstration) you can only see so far.
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The crowd appears to go on forever and also, you don’t know exactly where
you are in relation to the rest of the crowd; that’s a peer in Gnutella.

6.3 A Gnutella Scenario: Connecting and Operating
Within a Gnutella Network

This section provides an overview of how a servent joins the Gnutella network
and, once joined, how it then discovers other servents available on the network.
The next section illustrates this by using a typical Gnutella scenario.

6.3.1 Discovering Peers

There are various ways to discover a peer, both initially, when joining a
Gnutella network, and when already connected to a Gnutella node:

1. Out of Band Methods: e.g., IRC and Web: In the early days, users
used IRCs (Internet Relay Chat) to locate a host to which to connect.
Otherwise, users checked a handful of Web pages to see which hosts were
available. Users tried a number of hosts using the Gnutella software until
one worked.

2. Host Caches: GnuCache was used to cache Gnutella hosts, which was
included in Gnut software for UNIX. This gave users a permanent server
for users to connect to in order to find out other users on the Gnutella
network.

3. Internal Peer Discovery: involves issuing Ping messages, waiting for
Pong responses with invitations to connect.

Note: peers must be willing to receiving incoming connections from “un-
known” peers. Peers maybe picky about accepting connections for many rea-
sons; for example, nodes may have too many connections already or prospec-
tive nodes may not have good properties, e.g., sharing few files, slow connec-
tions, and so on. Also, peers leaving a network can cause additional shuffling.
Therefore, establishing a good set of connections can be haphazard.

6.3.2 Gnutella in Operation

Figure 6.4 illustrates the steps involved in connecting and searching within a
Gnutella network.

User A performs the following steps in order to join and become an active
participant in the Gnutella network:

1. User A uses one of the techniques discussed in Section 6.3.1 to join the
Gnutella network. In this case, the user connects to a GnuCache server.

2. GnuCache returns a list of nodes on the Gnutella network. User A chooses
one of these (User B) and attempts to contact it.
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4. User B grants request.

User A has now joined the
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Fig. 6.4. Joining and discovering peers within a Gnutella network.

3. User A sends a “Gnutella Connect” (see section 6.4) to User B to request
to join the network

4. User B accepts and returns a ”Gnutella OK” to User A, who finalises the
connection. User A is now connected to the Gnutella network.

5. User A now announces its presence by issuing a Ping to its neighbour
(User B); User B forwards this to User X, who, in turn, forwards it to
User C.

6. User C returns a Pong message, which gets passed along the same path
as the ping descriptor travelled. Pong messages contain the address of the
sender.

7. User A connects to User C by using the address specified in C’s pong
message to create another connection. User A continues in this fashion
until it has reached its maximum connection count (typically set to around
4).

6.3.3 Searching Within Gnutella

In order to locate a file, a servent sends a query request to all its direct neigh-
bours, which in turn forward the query to their neighbours, and the process
repeats. When a servent receives a query request, it searches its local files and
returns a query response containing all the matches it finds. Query responses
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follow the reverse path of query requests to reach the initiating servents for
the request. Servents along the path do not cache the query responses.

To avoid query requests and responses flooding the network, each query
contains a TTL field (typically set to 7, see Fig. 6.2). When a servent receives
a query with a positive TTL, it decrements it before forwarding the query to
its neighbours. Queries received with a TTL of 0 are not forwarded. In other
words, queries are propagated using a controlled flooding.

It is easy to see that the same query can visit a servent more than once
during the controlled flooding, i.e., through different neighbours of that ser-
vent. To make sure that each node does not serve the same query more than
once, each message (i.e., descriptor) is identified by a 128-bit Unique IDenti-
fier (UID). Servents memorise these UIDs and when a servent receives a query
with a UID it has encountered previously, it simply drops the query.

6.4 Gnutella 0.4 Protocol Description
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Fig. 6.5. An overview of the Gnutella specification and the descriptors it uses to
define the protocol.
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This section describes the Gnutella 0.4 protocol. This was the first descrip-
tion of the protocol and it is important to bear in mind that several more
recent implementations have extended these descriptors to impose additional
rules.

The Gnutella protocol defines the way in which servents communicate over
the network. It consists of a set of descriptors (i.e., packets) for communicating
data between servents, and a set of rules governing how Gnutella descriptors
are exchanged. An overview of the various descriptors is shown in Fig. 6.5.
This figure shows how the various descriptors relate to each other and how
they are packaged up to create a Gnutella descriptor packet that is passed
around the Gnutella network.

Briefly, a Gnutella descriptor consists of a header and a payload (i.e.,
message). The descriptor includes common attributes for any payload (e.g.,
id, TTL, hops, etc.). Then there are five payloads (messages) that can be
described using this protocol. These are Ping (for announcing presence), Pong
(for replying to ping messages), Query (for searching the network), QueryHit
(for replying to search messages) and Push (for traversing firewalls). This
structure and each payload is described in more detail in the remainder of
this section.

6.4.1 Gnutella Descriptors

Gnutella descriptors consist of a message header and a payload (see Fig. 6.6,
part I ). As listed earlier, the following five descriptors are defined:

1. Ping : is used to announce presence on the network. A servent receiving
a Ping descriptor can respond with a Pong descriptor.

2. Pong : is the response for a Ping, which includes the servent’s contact
details and the number of files it is sharing on the network.

3. Query : is the search mechanism, which contains a search string, e.g.,
“freeSongs”. A servent matching a search request returns a QueryHit.

4. QueryHit: contains a list of matches for the Query along with the ser-
vent’s contact details.

5. Push: provides a mechanism for a servent behind a firewall to share its
files.

To join a Gnutella network, as illustrated in Section 6.3.2, a servent opens
a TCP/IP connection to a peer already on the network and issues the follow-
ing command (ASCII encoded):

GNUTELLA CONNECT/<protocol version string>\\n\\n

where <protocol version string> is the version of the specification (e.g. “0.4”).
To accept a connection, a servent responds with:
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Fig. 6.6. The format of the Gnutella descriptor (I) and its header (II).

GNUTELLA OK\\n\\n

Otherwise, it is assumed that the connection is refused, perhaps because:

1. the servent has enough connections already
2. incompatible version number.

Once a servent has joined the network Gnutella descriptors (i.e., messages)
are used to make requests and to issue responses.

Each descriptor has a Descriptor Header, which is described in the next
section.

6.4.2 Gnutella Descriptor Header

The Gnutella descriptor header is given in Fig. 6.6, part II and consists of:

1. Descriptor ID: a unique identifier for the descriptor on (a 16-byte
string).

2. Payload Descriptor: contains the type of payload i.e. 0x00 = Ping, 0x01
= Pong, 0x40 = Push, 0x80 = Query, 0x81 = QueryHit.

3. Time to Live: represents the number of hops this descriptor will be
forwarded. Each servent decrements the TTL before passing it on. When
the TTL equals 0, the descriptor is not forwarded. The TTL is the only
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mechanism for expiring descriptors on the network and therefore, abuse
of this field will lead to unnecessary network traffic and poor network
performance.

4. Hops: keeps count of the number of times (i.e., hops) the descriptor has
been forwarded. When the number of hops equals the initial TTL value
specified, then the current TTL count equals 0.

5. Payload Length: is the size (in bytes) of the associated payload: i.e.,
the next descriptor header is located exactly Payload Length bytes from
the end of this header. This is the only mechanism for locating Gnutella
descriptors in communication streams1 and consequently, servents should
drop connections to reset if any errors occur.

The other section of a Gnutella descriptor is its payload, which can be one
of five different types, mentioned previously. These are described in detail in
the next five sections.

6.4.3 Gnutella Payload: Ping

Ping payloads contain no information as they are simply used to announce a
peer’s presence on the network. The header contains the necessary information
(i.e., the UID is used) for the peers to be able to detect Pong replies from
other peers. They will receive the reply because Pong descriptors always travel
along the same path as their corresponding Ping messages and are identifiable
by the initiating Ping UID. Further, more than one Pong descriptor can be
sent in response to a Ping descriptor. This allows certain caching servers to
reply with many servents’ addresses in response to a Ping.

A Ping is therefore simply represented by a header whose Pay-
load Descriptor field is 0x00 and whose Payload Length field is 0x00000000.

6.4.4 Gnutella Payload: Pong

A Pong descriptor (see Fig. 6.7) contains the address of the replying Gnutella
servent and the quantity of data it is sharing. It defines four fields:

1. Port: is the responding servent’s IP port for incoming connections
2. IP Address: is the responding servent’s address (little endian)
3. Number of Files Shared: specifies the number of files the servent is

sharing
4. Number of Kilobytes Shared: is the number of kilobytes the servent

is sharing.
1 All fields in this structure are in big-endian byte order (unless otherwise stated)

and IP addresses are in IPv4 format
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Fig. 6.7. The Pong descriptor, payload 2 and the Query descriptor, payload 3.

6.4.5 Gnutella Payload: Query

The Query descriptor (see Fig. 6.7) is Gnutella’s search message format. It is
passed to connected servents to enquire if they have the given file and has the
following two fields:

1. Minimum Speed: the minimum connectivity speed (in kb/second) of a
responding servent. Servents not passing this criteria should not respond
to the message.

2. Search Criteria: contains the search string, which can be at most Pay-
load Length (minus 2 for Minimum Speed field) bytes long. This field is
terminated by a null character (0x00).

6.4.6 Gnutella Payload: QueryHit

A servent receiving a Query descriptor will respond with a QueryHit (see Fig.
6.8, payload 4) if a match is found in its local file set. The QueryHit descriptor
that is sent from a responding host defines the following fields:

1. Number of Hits: is the number of matches in this result set.
2. Port: is the port used for connecting for file transfer.
3. IP Address: is the IP address of the host (little-endian format).
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Payload 5: Push

Payload 4: QueryHit
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0 2016 24 25

Fig. 6.8. The QueryHit descriptor, payload 4 and the Push descriptor, payload 5.

4. Speed: is the speed (in kb/second) of the host’s connection.
5. Result Set: is the set of Numberof Hits hits, where each hit contains:

a) File Index: is a unique identifier for this file. This is up to the host
to decide and is used for file retrieval, either directly or by using the
Push mechanism, if required.

b) File Size: is the file size (in bytes).
c) File Name: is the name of the file matched (double-null terminated,

i.e. 0x0000).
6. Servent Identifier: is the UID for this servent, typically calculated using

some function of this servent’s network address, used in the Push opera-
tion, if needed.

Using the same identification mechanism as the Ping and Pong messages,
the QueryHit descriptors contain the same Descriptor Id as the corresponding
Query descriptor and since QueryHit descriptors may only be sent along the
same path that carried the Query descriptor, this ensures that only those
servents that routed the Query descriptor will see the QueryHit descriptor.

6.4.7 Gnutella Payload: Push

Push (see Fig. 6.8, payload 5) provides the mechanism to allow a servent hiding
behind a firewall to serve files on a Gnutella network. This is illustrated below
using a typical Push scenario:
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1. A servent (A) issues a search request.
2. Servent B is contacted (via several intermediaries) and matches the search

request.
3. B responds with a QueryHit descriptor. Imagine here that this servent is

behind a firewall and consequently cannot accept incoming connections.
4. Servent A receives the QueryHit returned from B because it checks the

Descriptor Id to see if it matches the one it issued in its Query descriptor.
5. Servent A sends a Push request to servent B. The Push descriptor is sent

along the same path as its corresponding QueryHit, which ensures that
servent B will see it. This is achieved by a simple routing algorithm that
makes a peer drop a Push descriptor which does not match any QueryHit
descriptors they have seen.

6. Servent B receives this request (by matching the Descriptor Id) and at-
tempts to create a new TCP/IP connection to servent A by using the IP
Address and Port fields of the Push descriptor; i.e., servents that cannot
accept incoming connections can normally create outgoing ones.

7. A direct connection is established and the file is downloaded. If a direct
connection cannot be created, then it is likely that servent A is also behind
a firewall and consequently, a file transfer cannot take place.

The Push descriptor defines four fields. To simplify things, servents A and
B from the above scenario are used to depict the originator and responder to
the search request in the following description of the Push descriptor’s internal
fields:

1. Servent Identifier: is the UID for the servent B and is set by A by using
the Servent Identifier for the corresponding QueryHit. This UID is in fact
B’s UID.

2. File Index: is set to the value of one of the File Index fields from the
QueryHit response to specify the file to be pushed.

3. IP Address: is the IP address of servent A, i.e., the host where the file
should be pushed (little-endian format).

4. Port: is the port of servent A for the connection of the push.

6.5 File Downloads

In brief, after the query hits are received by the servent, it establish a direct
connection in order to download one of the files in the QueryHit descriptor’s
Result Set. The download request is carried out using the HTTP protocol,
through an HTTP GET request with the following message format:

GET /get/<File Index>/<File Name>/ HTTP/1.0\\r\\n

Connection: Keep-Alive\\r\\n

Range: bytes=0-\\r\\n

User-Agent: Gnutella\\r\\n

\\r\\n
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where File Index and File Name are the index and name for one of the files
in the Result Set. For example, if the Result Set from a QueryHit descriptor
contained the entries given in Fig. 6.9, then a download request would contain
the following:

GET /get/1234/coolsong.mp3/ HTTP/1.0\\r\\n

Connection: Keep-Alive\\r\\n

Range: bytes=0-\\r\\n

User-Agent: Gnutella \\r\\n

\\r\\n

coolsong.mp3\x00\x00

File

Name

5678910

File

Size

1234

File

Index

Fig. 6.9. An example of a result set from a QueryHit Descriptor.

The servent receiving this request replies with the following HTTP OK mes-
sage:

HTTP 200 OK\\r\\n

Server: Gnutella\\r\\n

Content-type: application/binary\\r\\n

Content-length: 5678910\\r\\n

\\r\\n

This response is followed by the actual data, which is read according to the
number of bytes specified in the Content-length field as illustrated. To assist
with transient connectivity, the Gnutella protocol also provides support for the
HTTP range parameter, which enables an interrupted transfer to be resumed
at a later point.
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Fig. 6.10. A list of Gnutella implementations for various platforms.

6.6 Gnutella Implementations

Figure 6.10 gives a list of some examples of Gnutella-based applications, bro-
ken down into three different operating systems, which are available (or have
been available) on the internet for file sharing. Some other client implemen-
tations are listed in Appendix A.

6.7 More Information

There are a number of good articles and papers on the Internet that give
concise overviews of Gnutella. One in particular can be found on the Limewire
site [49]. Another [50], has a number of papers relating to Gnutella including
various studies that have been and indeed still are being carried out.

6.8 Conclusion

In this chapter, Gnutella has been described. Gnutella is a search protocol that
allows peers to search a network of peers without the need for any centralized
control. In Gnutella, every node is both a client and a server and is referred
to as a servent. Servents join the network using one of several techniques, e.g.,
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the Web, IRC, GnuCache, and once joined, can discover other peers through
Gnutella’s discovery mechanism using Ping/Pong descriptors.

The Gnutella protocol defines the way servents communicate over the net-
work. It defines a set of Gnutella descriptors and a set of rules governing their
interaction. Gnutella descriptors consist of a descriptor header and a payload.
The header contains a descriptor’s unique identifier and its corresponding
payload contains one of the following types, e.g., Ping, Pong, Query, Query-
Hit and Push, which are used for peer discovery, searching and for traversing
firewalls within the Gnutella decentralized network.



7

Scalability

P2P has led to a recent renewal of interest in decentralized systems. Although
the underlying Internet itself is the largest decentralized computer system in
the world, most systems have employed a completely centralized topology in
the 1990s through the massive growth of the Web.

With the emergence of P2P in early 2000, there has been a shift into em-
ploying the use of radically decentralized architectures, such as Gnutella [6]. In
practice however, extreme architectural choices in either direction are seldom
the way to build a usable system. Most current P2P file-sharing software, for
example, use a hybrid of the two approaches.

In this chapter, we look at the ways in which peers are organized within
ad-hoc, pervasive, multi-hop networks. Social networks are introduced and
compared against their P2P counterparts. A summary of the typical topologies
for P2P networks is given and then an analysis is undertaken using Gnutella
as a test-case example, describing the evolution of the Gnutella system into
using a hybrid topology.

7.1 Social Networks

Before we analyse P2P networks, let’s first take a look at a unique social ex-
periment conducted in 1967 by Harvard professor Stanley Milgram [154], with
some notes from [62]. He performed a social-networking experiment within the
United States to find out how many social hops it would take for messages to
traverse through the population, which was at the time, around 200 million
people.

He posted 160 letters to randomly chosen people living in Omaha, Ne-
braska and asked them to try to pass these letters to a stockbroker he knew
working in Boston, Massachusetts (see Fig. 7.1). The rules were that they
could only pass the letter to intermediaries known to them on a first-name
basis. Such intermediaries should be chosen intelligently so that they might
bring the letter closer to the stockbroker. For example, this decision could
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Boston

Omaha

Fig. 7.1. The Milgrim social-networking experiment, illustrating the distance on a
map of the states that he posted the 160 letters.

be because they may know someone who is geographically closer to Boston;
e.g., they may know someone in Illinois, or that they may know someone who
may know someone who lives near Boston. The friend given the letter would
continue in this fashion, passing it on to another friend, and so on until the
letter reached a friend of the stockbroker who could give it to him personally.
At each stage of the journey the intermediaries noted their details on the
package.

In the end, 42 letters made it through to the stockbroker. The interest-
ing fact was that the average number of hops (i.e., through intermediaries)
each letter passed through was 5.5. The Milgram experiment demonstrated
concretely for the first time what has become popularly known as the small-
world effect, something we’d say when we bump into a friend from our home
town on some remote beach in the middle of nowhere, using the expression,
“its a small world, isn’t it!” with the infamous retort “Yes, but I wouldn’t like
to paint it!”.

This experiment was designed to explore the properties of social networks
and it gave evidence that the social network of the United States could be
indeed connected with a path-length (number of hops) of around 6. This
number is surprisingly low compared to the population at the time. Does this
mean it takes less than 6 hops to traverse 200 million people? If so, can’t we
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achieve the same organization in computer networks? And if so, can we not
simply model these on social networks as they work so well?

It turns out that although social circles are highly clustered, some ac-
quaintances in the group will have more wide-ranging connections and these
connections form a bridge between social clusters that are geographically far
away from each other. This bridging plays a critical role in bringing the entire
network closer together. For example, in the Milgram experiment, a quarter
of all letters reaching the stockbroker passed through a single person, who was
the local shopkeeper. In all, half of the letters pass through just three peo-
ple, who acted as gateways or hubs between the source and the wider world.
A small number of bridges therefore can dramatically reduce the number of
hops.

7.2 P2P Networks

P2P networks have a number of similarities to social networks. People would
be peers and the intermediaries in Milgram’s experiment would be known as
gateways, hubs, bridges or rendezvous nodes in P2P networks. The number of
intermediaries used to pass the letter from the source to the destination would
be the number of hops in a P2P network. The similarities go on and on. In
many senses, P2P networks are more like social networks than other types of
computer networks as they are often self-organizing, ad hoc, they employ clus-
tering techniques based on prior interactions (like we form relationships), and
have decentralized discovery and communication, which arguably are analo-
gous to the way we have formed neighbourhoods, villages, towns, cities, etc.

7.2.1 Performance in P2P Networks

So, how do we organize P2P networks in such a way as to get optimum per-
formance? Well, performance in P2P networks is non-deterministic. A P2P
network is often constructed in an ad hoc fashion and due to its nature and
transient availability of its cooperating peers, it is therefore impossible to
stabilise the network for optimal performance. However, this does not mean
though that we should give up, it simply means we have to devise complicated
robust algorithms that make the best of this situation. Therefore, performance
in P2P networks cannot be measured precisely; it rather involves taking em-
pirical measurements such as:

• How long does it take to search for a particular file?
• How much bandwidth will the query consume?
• How many hops will it take for my package to get to a peer on the far side

of the network?
• If I add/remove a peer to/from the network will the network still be fault

tolerant?
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• Does the network scale as we add more peers? Such networks can rapidly
expand from a few hundred peers to several thousand or even millions.

The answers to these questions have a direct impact on the success and
usability of a system. Remember that P2P networks operate in unreliable en-
vironments where peers are continuously connecting and disconnecting. Re-
sources may suddenly become unavailable for a variety of reasons: e.g., users
may disconnect from the network because they may have decided that they
do not want to participate any more. Further, there are more random failures,
e.g., cable and DSL failures, power outages, hackers and attacks, as personal
machines are much more vulnerable than dedicated servers. In such an en-
vironment therefore, there need to be algorithms which can cope with this
continuous restructuring of the network core. P2P systems need to treat fail-
ures as normal occurrences, not freak exceptions and therefore P2P networks
must be designed in a way that promotes redundancy with the trade-off of a
degradation of performance.

There are three main factors that make P2P networks more sensitive to
performance issues compared to other types of network [62]; these are:

1. Communication: An obvious fundamental necessity of any P2P network.
Most users connect through dial-up, cable or DSL and so their connection
speed is the main bottleneck. However, this problem is amplified by the
highly parallel, multi-hop nature of a P2P network where it often takes
a number of hops for a packet to reach its destination. Therefore other
users’ connection speeds also create a bottleneck; i.e., if one peer on your
multi-hop request is running a 56K modem then this slows things down
en route. Network traffic minimization and load balancing therefore are
important considerations to overall performance.

2. Searching: There is no central server in P2P networks so many more
peers are involved in the search process, which typically occurs over sev-
eral parallel network hops. Each hop of such a search adds to the total
bandwidth load and therefore the time to set up a connection becomes a
critical factor. Combine this with the inherently unreliable nature of the
individual peers and delivery time starts to grow alarmingly; e.g., if a peer
is unreachable, TCP/IP can take up to several minutes to time out the
connection.

3. Load-Balancing Peers: In theory, true decentralized P2P networks con-
sist entirely of equal peers, meaning that each peer potentially shares as
much as it consumes. However, in real-world implementation, such net-
work ideals are skewed by usage patterns. For example, studies have in-
dicated that around 70 percent of Gnutella users share no files at all [37].
Too many free riders will degrade the performance of the network for oth-
ers and therefore care must be taken to factor in the correct proportion so
that measures can be taken to optimize the current topology, not assume
a static and perhaps unrealistic one.
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The next section outlines a number of the topologies employed by a variety
of distributed systems including the scalable P2P file-sharing applications.

7.3 Peer Topologies

This section is based on an on-line article [66] and covers a number of different
types of topology that a P2P network can use. Fundamentally, the debate
between centralized and decentralized systems is about topology, that is, how
the nodes in the system are connected. For P2P networks, the topology is
considered in terms of the information flow of the network. Nodes in the
graph are the peers and links (edges) between peers indicate a regular sharing
of information. For simplicity, edges here are considered undirected. Below,
four common topologies are described and then three hybrid topologies are
discussed. These are:

1. Centralized
2. Ring
3. Hierarchical
4. Decentralized
5. Centralized/Ring
6. Centralized/Centralized
7. Centralized/Decentralized

These topologies are described in the following seven sections.

Fig. 7.2. A centralized topology.
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7.3.1 Centralized

Centralized client/server systems (see Fig. 7.2) are by far the most common
form of topology. Communication is completely centralized with many clients
connecting directly to a single server, which is illustrated in detail in Sec-
tion 1.3.3. Examples of centralized systems include Web servers, databases,
SETI@Home, etc.

7.3.2 Ring

Fig. 7.3. A ring topology.

A ring topology is a physical closed loop consisting of point-to-point links
and is a common method for scaling centralized services (see Fig. 7.3) to act
as a distributed server. Communication between the servers coordinates the
sharing of the system state. This establishes a group of nodes that provide
identical function to a single server but incorporate redundancy and load-
balancing capabilities. Typically, ring systems consist of machines that are on
the same intranet and which are owned by a single organization.

7.3.3 Hierarchical

Hierarchical topologies have a tree-like structure and provide an extremely
fast way of searching through information that is organized in a consistent
fashion. For example, in a binary tree, every node’s left sub-tree has values
less than the node’s value, and every right sub-tree has values greater, which
partitions the search space into well-defined sub-segments for searching.
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Fig. 7.4. A hierarchical topology.

The most well-known hierarchical system (see Fig. 7.4) is DNS, where
authority flows from the root name servers to the server for the registered
name and often down to third-level servers. Usenet is another large hierarchical
system, using a tree-like structure to copy articles between servers. Here, the
underlying protocols are symmetric but in practice, news articles propagate
along tree-like paths with a relatively small set of hosts acting as the backbone.

Fig. 7.5. A decentralized topology.
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7.3.4 Decentralized

In a completely decentralized system (see Fig. 7.5), there is no single point of
control. Peers communicate symmetrically and have equal roles. Gnutella is
a good example and has been described in detail elsewhere in this book (see
Chapter 6). Pure decentralized networks are extremely fault tolerant against
random peer failures but this comes at a price, which is the bandwidth required
to search such a network. Later in this chapter, we will see several studies
that indicate this (see Section 7.7). For example, in pure Gnutella networks,
a quarter of the overall network bandwidth is consumed by searching alone.

7.4 Hybrid Topologies

Distributed systems typically combine multiple topologies and are therefore
generally more complicated than the simple cases listed above. When sys-
tems combine two or more topologies, they are referred to as a hybrid topol-
ogy. Peers typically switch roles and act as gateways between the combined
topologies. For example, within a centralized-decentralized topology described
in detail below a peer is part of a decentralized network of super-peers as one
role and acts similar to a simple Gnutella peer within this environment but
also acts as a centralized look-up servers for the sub-network that it is respon-
sible for.

7.4.1 Centralized/Ring

Fig. 7.6. A centralized/ring topology.
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Robust Web servers often have a ring of servers for load balancing and
redundancy (see Fig. 7.6). This topology is a description of a ring that also
includes the client connections; i.e., this is a centralized system where the
server is itself a ring. The result is the simplicity of a centralized system (from
the client’s point of view) with the robustness of a ring.

7.4.2 Centralized/Centralized

Fig. 7.7. A centralized/centralized topology.

Here, there is a central point of control but often the behind-the-scenes
capabilities are distributed across one or more other servers (see Fig. 7.7).
In Web applications, for example, when a Web browser contacts a server to
issue a request, the Web server would contact a number of other nodes in
order to satisfy that request. The Web server may be contacting a distributed
database of Web links, for example (as in the Google case), or interacting
with a parallel cluster of dedicated machines used to perform some scientific
calculation. Stacking multiple centralized systems in this way is the core of
n-tier application frameworks.

7.4.3 Centralized/Decentralized

As illustrated in Fig. 7.8, the centralized/decentralized topology consists of a
two-tiered structure, where a number of centralized systems are connected in a
decentralized fashion. Therefore, at the higher level, you have a structure and
behaviour similar to Gnutella, that is, a highly fault-tolerant decentralized set
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Fig. 7.8. A centralized/decentralized topology.

of peers that provide information to their lower-level collections of centrally
organized peers.

The fault tolerance of the upper layer is highly dependent on the number
of nodes present, but in structure, such networks are rather reminiscent of
social networks, where many people typically use a a gateway (remember the
shopkeeper?) in order to connect to far-flung communities i.e. the central-
ized/decentralized topology implements the small-world effect demonstrated
by Milgrim.

It turns out that centralized/decentralized topologies scale remarkably well
and have been therefore adopted by a number of popular P2P file-sharing
systems. For example, the FastTrack file-sharing system used by KaZaA and
Morpheus, which can connect hundreds of thousands of peers, use this topol-
ogy.

Within file-sharing lingo, the decentralized peers are referred to as super-
nodes or Gnutella reflector nodes. Super-nodes act as caching servers to con-
nected clients and perform a similar operation to Napster servers. So, rather
than propagating the query across the entire set of nodes, the super-peer will
check its own database to see if it knows the whereabouts of the requested
file and if so, it returns that address to the client, just like Napster. If not, it
performs a Gnutella-type broadcast across the decentralized set of super-peers
to propagate this request across the network. This means that a client can
search an entire network without consuming a vast amount of bandwidth.
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Jxta rendezvous nodes perform a similar type of service within Jxta net-
works.

7.5 The Convergence of Napster and Gnutella

It is interesting to note that both Gnutella and Napster converged towards a
centralized/decentralized topology, even though they came from completely
different sides of the coin. Gnutella started its life as a decentralized system
and Napster started its life as a centralized search architecture, with brokered
communications. However, Gnutella inserted super-peers and Napter dupli-
cated its centralized search engines for scalability, both resulting in a similar
design topology, as illustrated in Fig. 7.9.

Napster Gnutella

User

Napster

Gnutella Super Peers:
1. Self Organising??

2. Reflector (clip2.com)

=?

User

Napster

N2

N3

Napster

Duplicated

Servers

Fig. 7.9. The convergence of Naptser and Gnutella.

Consider both scenarios more closely:

• Gnutella is a completely decentralized search which operates on the
premise that all peers are equal. In practice however, users operate at
different levels. One user may only have several files to share, whilst
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others might be sharing several thousand. Therefore, in a completely
self-organizing way, Gnutella tends to converge into a hybrid structure.
Clip2.com [3] recognised this early on and developed a program that they
call the Gnutella Reflector. This is a proxy and index service designed to
make Gnutella more scalable that can also make outside connections to
gather other information, as described.

• Napster, on the other hand started its life as a brokered system, centraliz-
ing the search but decentralizing the communication (downloading of the
MP3 file). Napster however, started to replicate its main server as the user
base grew, thereby creating many Napster servers that served fewer clients.
This, in effect, has exactly the same result as the Gnutella reflector nodes
but instead, they extended the centralized approach into a decentralized
arena and not vice-versa.

The key difference here, as illustrated in Fig. 7.9, is that within a decen-
tralized system, such as Gnutella, the formation of the Gnutella super-peers
is self-organizing and scales proportionately and dynamically with the size of
the network. The actual algorithm for achieving this is typically based on a
combination of user preferences and communication resource considerations.

However, in a centralized/brokered approach, the servers have to be explic-
itly added by hand and therefore cannot scale dynamically with the network,
without using some extra management software capable of monitoring the cur-
rent usage. In essence though, the Gnutella reflector nodes are mini-Napster
servers. They maintain an index of files from peers currently connected. When
a query is issued, the reflector does not retransmit it; rather, it answers the
query from its own memory.

7.6 A Southern Side-Step

During the writing of this book, I decided to get away to somewhere quiet and
so I packed my bags and took a three week writing trip to Sicily. Interestingly
(and unsurprisingly) one night, I was in a pub and they adopted a rather
bizarre serving scheme.... Basically, a customer had to walk to one server by a
till at the centre of this long bar, order his drink, then walk back to his barstool
and pass this receipt onto the bartender who would bring him his drink. I
thought this was very strange, as they turned an inherently decentralized
service into a centralized one!! Why, I thought to myself, could I not simply
pay the bartender directly?

Anyway, after a few drinks the bar got rather packed and I soon realised
that this scheme in fact was working rather well. This kind of disturbed me
because there I was, writing this book about decentralized systems and these
Sicilians have completed circumvented the idea! so perhaps this is all wrong....

Sometime later though I was saved by the realisation of two facts, namely:
the Italians, in general, don’t drink so much, and I predicted that this could
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never work, for example, in Britain...; but most importantly, I then realised
that they were not running a centralized system at all. They were in fact
running a brokered system; i.e., they centralized discovery (i.e. and therefore
payment) but the service of pouring drinks was still decentralized; hence the
scalability.

Furthermore, I did notice that during the night every time the cashier
wandered off for a cigarette, not only was there a non-trivial accumulating
number of patrons waiting but also, the bartenders finished serving their cur-
rent order and then stood around doing absolutely nothing; that is, the whole
system came to a halt. Hence I conclude that the Waxies in Catania has in
fact, the same taxonomy as Napster: centralized discovery and therefore with
intermittent availability (with no redundancy). However, due to its decentral-
ized communication, services that have been discovered (and paid for here)
can still be concluded as normal. Of course, we are talking about payment
and beer but as social perspectives go, there are much worse analogies!

7.7 Gnutella Analysis

The centralized/decentralized architecture is the most popular architecture
used within today’s P2P file-sharing applications. This section gives a back-
ground into some empirical studies that support this type of topology by
analysing the behaviour of users and connectivity on a Gnutella network. But
first, let’s recap the core Gnutella model and how far this scales.

Gnutella uses a simple broadcast model to conduct queries, which does not
utilize the small-world effect. Each peer tries to maintain a small number of
connections (around 3 or 4). Gnutella’s topology is in fact a 3- or 4-D Cayley
tree [68].

Searching in Gnutella involves broadcasting a Query message to all con-
nected peers. Each connected peer will send it to its connected peers (say 3)
and so on. This search will run for a specific number of hops, typically 7. If the
number of connected peers, c = 3 and the hops, h = 7 then the total number
of peers searched (s) in a fully connected network will be:

s = c + c2 +c3 + ..
s = 3 + 9 + 27 + 81 + 243 + 729 + 2187 = 3279 Nodes

In practice, the network often converges somewhere between 3 and 4 con-
nections per node giving around 10,000 nodes each peer can search (assuming
full connectivity). In the following sections, a number of studies show how
such a Gnutella network performs and evolves.

7.7.1 Gnutella Free Riding

In the article [37], they considered two types of free riding in an analysis of
the Gnutella network: peers free riding that only download files for themselves
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without ever providing files for download for others; and users that have unde-
sirable content, i.e., they might be sharing files but the files may be corrupted
and therefore lead to unnecessary network traffic.

They found that, in one experiment, that 22,084 of the 33,335 peers in the
network (or approximately 66%) of the peers share no files, and that 24,347 or
73% share 10 or fewer files. The data also showed that the top 1% (333 hosts)
represent approximately 37% of the total files shared. This quickly escalates
to the top 20% (6,667 hosts) sharing 98% of the files. This experiment shows
that even without Gnutella reflector nodes, the Gnutella network naturally
converges into a centralized/decentralized topology with the top 20% of nodes
acting as super-peers or reflectors.

7.7.2 Equal Peers?

Why can’t there be a network full of equal peers? Well, there are a number of
reasons including: users have a variety of different spec’d machines with differ-
ent capabilities; users connect via different mechanisms, and hence different
speeds; and each user has different interests. For example, one user may have
collected a huge number of files, and although she may be willing to share
these files, other users may not be interested in them at all. So, even though
they are a good contributor in theory, they are not effective in the network as
a whole, and therefore will simply be ignored.

Further, Clip2.com [2] performed an analysis of Gnutella based on mea-
surements over a month. They noted an apparent scalability barrier when
query rates went above 10 per second. Why? Well, a typical Gnutella query
message is around 560 bits long and queries make up approximately a quarter
of traffic. A quick calculation therefore, given that Gnutella peers are con-
nected to average of 3 remote peers, gives us 560 *10 * 3 = 16,800 bits per
second. Now, if this is a quarter of the traffic then the total traffic is 16,800 x
4 = 67,200 bits per second. Now, a 56K link cannot keep up with this amount
of traffic and therefore one node connected in the incorrect place can grind
the whole network to a halt. It is for this reason that one of the main goals
for the organization of a P2P network is to place slower nodes at the edges of
the network.

7.7.3 Power-Law Networks

A study of the topology of the Gnutella network was undertaken [69] over a
period of several months, and it reported two interesting findings:

• Power-Law Structure: the Gnutella network shares the benefits and
drawbacks of a power-law structure [153];

• Virtual Overlay: the Gnutella network topology does not match well
with the underlying Internet topology leading to inefficient use of network
bandwidth.
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A power-law structure is when a network organizes itself so that most
nodes have a few links and a small number of nodes have many (i.e., like super-
peers). This is equivalent to the centralized-decentralized topology described
above. The article points out that the power-law networks have been found to
show an unexpected degree of robustness when facing random node failures.
Consequently, the ability of the network to communicate is unaffected by high
failure rates. However, such error tolerance comes at a high price. For example,
such networks are more vulnerable to attacks than completely decentralized
networks, e.g., by selectively removing a few of the critical super-nodes, one
can inflict massive damage on the structure and function of the network as a
whole.

In the paper, the author suggested two directions for improvement. He
suggested that an agent could monitor the network and intervene by asking
servents to drop/add links to keep the topology optimal. Such agents would
have knowledge of the underlying network and therefore, be able to create a
better virtual overlay for the Gnutella network. The second suggestion is to
replace the Gnutella flooding mechanism with a smarter routing and group
communication mechanism.

7.8 Further Reading

Minar [66] creates a taxonomy for analysing various network topologies in
his second article. Gunther [67] compares various topologies for scalability
issues for networks up to two million peers. He found that the 20-dimensional
hypercube performed the best. Also, Hong [62] provides an excellent overview
for scalability issues within P2P networks and provides two case studies for
Freenet (see Chapter 9) and Gnutella.

There are many recent developments in new virtual network overlays, cre-
ating new topologies for P2P computing. Some examples of these are Pastry
[44] and Chord [45].

7.9 Conclusion

This chapter gave a background into some of the problems facing the scalabil-
ity of P2P networks. Due to their extremely dynamic nature, standard network
topologies do not work very well and therefore, more elaborate topologies are
needed to offer scalability and robustness against random peer failures.

The most popular topology use in recent file-sharing applications is the
centralized-decentralized model that employs the same characteristics as a
power-law network. This topology is similar to social and biological networks,
where most nodes have a few links and a small number of nodes have many,
serving as gateways to other networks. Such a topology in Gnutella can be
implemented by using super-peers or reflector nodes.
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Security

This chapter covers the basic elements of security in a distributed system.
It illustrates the various ways that a third party can gain access to data and
gives an overview of some of the design issues involved in building a distributed
security system.

Cryptography is introduced, then cryptographic techniques for symmet-
ric and asymmetric encryption/decryption are given, along with the role of
one-way hash functions. An example of the use of some of these techniques
is provided through an example of how one digitally signs a document, e.g.,
email. Both asymmetric and symmetric secure channels are discussed, along
with scenarios for their use. Finally, the notion of sand boxing is introduced
and illustrated through the description of the Java security-manager imple-
mentation.

This chapter appears here in this book because it provides a gateway for
the middleware and applications that will follow, which use various security
techniques and frameworks. For example, Freenet (in Chapter 9) uses many of
these techniques extensively for creating keys for the Freenet network, which
are used, not only for privacy issues, but to actually map from the data content
to network location. Further, Jxta (Chapter 10) and Grid computing (Chapter
4) also provide security infrastructures and address authentication issues.

This chapter is based on many on-line papers and articles and an excellent
overview of distributed-systems security infrastructures, given by Tanenbaum
and van Steen [1].

8.1 Introduction

Security has to be pervasive throughout a system. A single design flaw in
the security will render the entire security system useless and therefore great
care must be taken in considering the many design choices for the particular
system at hand. Security is related to the notion of dependability and a de-
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pendable system must be available, reliable, safe and maintainable. Therefore,
to address the security of a dependable system, we must provide:

• Confidentiality: where authorized access is a necessity
• Integrity: where alterations are only performed by authorized parties,

e.g., if we send data from one place to another, we must provide techniques
for ensuring that the data has not been modified along the route

Before we look at the various techniques that can be used to address these
issues, let’s look at the possible security threats. In brief, there are four types
of security threat to computer systems:

1. Interception: involves an unauthorized party gaining access to a service
or data, e.g., when someone is eavesdropping into a private conversation.
Alternatively, interception could also involve somebody making an illegal
copy of a file.

2. Interruption: happens when a service (or data) becomes unavailable,
unusable, destroyed, etc. There are numerous examples: when a file is lost
or corrupted, or denial of service through host failure or service attacks.

3. Modification: involves modifying the contents of data or a service with-
out authorization. Therefore, data may become invalid or a service may
return a different result than what is expected; e.g., you could rebind a
Web service to an alternate implementation or modify database entries.

4. Fabrication: involves generating data or an activity that wouldn’t nor-
mally exist, e.g., adding a password into a password file or database.

A company first needs to define a Security Policy. This is a set of rules
defining which actions entities, e.g., users, administrators, services, etc., are
allowed to take. Once a security policy has been defined, it is possible to define
which security mechanisms can be used in order to enforce these criteria. There
are four types:

1. Encryption: is fundamental to security and involves encoding (encrypt-
ing) data into something an attacker cannot understand (i.e., it imple-
ments confidentiality).

2. Authentication: is used to verify the claimed identity of a user. There
are many types of authentication mechanisms, e.g., passwords, digital cer-
tificates, etc.

3. Authorization: involves checking that a user has the correct permission
to perform a particular operation. Typically, authorization is performed
after authentication; e.g., in UNIX, even though you have logged on (i.e.,
authenticated), you still may not have access to certain resources; i.e., you
will not be able to write a file in any directory other than your own.

4. Auditing: is a passive security measure which tracks or logs the clients
that log in and use the system. Auditing can be used to find out who and
how a user accessed a particular resource. Auditing is useful in finding out
where in the system the security breach happened, which can be used to
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fix the problem for the future. Further, often if an attacker knows there
is such a system in place this is a good deterrent.

8.2 Design Issues

There are a number of design issues that need to be considered when designing
a general-purpose security system. In this section, descriptions of three issues
are given [1]:

• Focus of Data Control: specifies the level (or position) where the pro-
tection for the data or services is provided.

• Layering of Security: concentrates on where in the security stack (i.e.,
within the OSI model) the security focus will be.

• Simplicity: focuses on the need for simplicity for any security system. If
the security system is not simple to understand, then users will not trust
it.

These three issues are described in the following sections.

8.2.1 Focus of Data Control

There are three points where data (or services) can be protected within a
distributed system; see Fig. 8.1. These are at the:

1. Data Level: to protect the data directly from wrong or invalid operations
(see Fig. 8.1). For example, integrity checks could be implemented within
a database each time data is accessed or modified. Another, more familiar
example to Java programmers, is array-bounds checking, which verifies
the legality every time an array item is accessed. If the operation is legal
then access is granted, otherwise an exception is thrown at runtime.

2. Method Level: restricts which operations can be applied to the data and
by whom. In object-oriented terms, this is equivalent to a set of accessor
methods on an object, which dictate the types of operations (e.g., setX,
getY, etc.) that can be performed on the class’s internal data (which
could be set private). You may also restrict the access to a database using
predefined interfaces. Then, within a method’s implementation various
types of checks can be performed to ensure the validity of the operation.

3. User Level: focuses on the users of the system; i.e., only selected users can
have access to the application/data/service regardless of what operations
they want to perform. A user role is defined for each user. For example,
on Windows XP, there are two ‘user roles’: a Computer Administrator or
Limited. A computer administrator can install programs and hardware,
make system-wide changes, access and read files, and create and delete
user accounts whereas a Limited user can only change her own settings,
e.g., picture and create, change or remove her own password and files.
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Fig. 8.1. The three approaches for protecting data: at the data, access, or user
level. The diagram shows the consequences of each action.

8.2.2 Layering of Security Mechanisms

An important design issue for implementing secure systems is to decide at
which level the security mechanisms should be placed. The level positions the
security mechanisms within the logical organization of system components,
as illustrated in Fig. 8.2. Shown here are the following broad layers: appli-
cations, middleware, operating system services, operating system kernel and
communications, which illustrate an important separation of general-purpose
services from communication.

Further, it is important to relate this to the notion of trust. A system can
be secure but whether a customer trusts it is another matter. Therefore, a
crucial factor is to make sure that a client trusts the layer you decided on but
further, that he also trusts the layer(s) on which these security services are
built.

For example, say Tim on machine A wanted to send a message to Gareth on
machine B. If Tim is worried that his confidential message will get interrupted
then he must choose a secure service for doing this. Say, he chooses secure FTP
to perform this operation; then he must trust that secure FTP performs the
operation it says it does. However, since secure FTP uses SSL (secure sockets
layer, secure communication via sockets) then Tim needs to trust that SSL
is also secure. If he does not then he may choose another form of secure
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Fig. 8.2. The logical organization of a distributed system into several layers.

communication, such as public keys. As a designer of a security system all
these factors are important in deciding at which level to place the security
mechanisms.

Dependencies between services regarding trust define a Trusted Computer
Base (TCB). TCB is the stack of security mechanisms that are needed to
enforce a security policy. For example, a security policy implemented at the
middleware level relies on the security of the underlying operating systems.
If the underlying infrastructure is adequate then the TCB could include the
local operating systems at various hosts. Globus [28], for example, defines a
set of security polices at the middleware level by defining a set of rules for a
virtual organization (see Chapter 4), i.e., a collection of individuals/machines.
It uses a single sign-on mechanism through the use of mutual authentication
using X.509 certificates [72] and leaves the local administration to deal with
the local security levels.

Finally, another example is the Reduced Interfaces for Secure System Com-
ponents (RISC) approach. Here, any security-critical server is placed on a sep-
arate machine isolated from end-user systems using low-level secure network
interfaces. Clients and their applications can access the server only through
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the secure network interfaces. For example, in my department, the Triana [29]
Web server was implemented in this way. This Web server had the capability
of creating user accounts and the purchasing and downloading of software.
Each user’s password and information is kept private. On the actual server
therefore, every means of communication is turned off except that it runs an
SSH (Secure Shell) server. Furthermore, only other one machine in the depart-
ment can be used to access this server by using the SSH command. If data
is needed to be uploaded to the server then the administrator needs to SSH
to the machine and then FTP back to the machine from which they want to
download the data.

8.2.3 Simplicity

Simplicity is a key component of any software architecture and therefore,
the fewer security mechanisms the better. Users tend to trust systems that
are easily understood and trusted to work. If users do not understand the
mechanisms then how can they truly trust them?

Simplicity contributes to the trust that end-users will put into the ap-
plication and, more importantly, will contribute to convincing the designers
that the system has no security holes. The more complicated the system, the
harder it is to debug.

Unfortunately, it often is the case that security is an afterthought within
the application-development life cycle. Therefore, the designer of the security
system must develop security mechanisms around an existing complicated
application. This makes it difficult to keep things simple and consequently,
difficult to trust.

8.3 Cryptography

8.3.1 Basics of Cryptography

Cryptography is fundamental to security in distributed systems. It involves
encrypting a message (i.e., scrambling it) before it is sent (so that it remains
private) and decrypting it upon arrival before it is read. Encryption and de-
cryption are accomplished by using cryptographic keys as their parameters.
All cryptographic systems have the following two core properties:

• the algorithm is publicly known
• and the key is kept private.

The algorithms are written in such a way that it is mathematically in-
tractable to calculate the key from any encrypted text. This ensures the sim-
plicity of cryptography from a user’s standpoint because all she needs to
provide is a key and the rest is hidden under a well-known trusted algorithm.
Keys typically consist of a single number, e.g., a long.
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Fig. 8.3. Either a user uses plaintext (no protection) or he can use encryption. This
diagram illustrates the basic cryptographic techniques and which protection these
give.

So, if a user wishes to send a message to another user, she could choose to
send this message as it is. However, this message would not be protected at all
and could be liable for infringement using any of the mechanisms described
in Section 8.1. For example, the message can be intercepted passively (i.e.,
eavesdropped, or actively by changing the contents of the original text of the
message. Using cryptography provides defence from such security threats.

Figure 8.3 shows the basic idea behind cryptography. Here, the original
form of the message is called plaintext and the encrypted form is referred to as
cyphertext. The input plaintext (P) is transformed into the ciphertext (C) by
using an encryption method (E) based on a given key (K); i.e., C = Ek(P ).
The plaintext is then calculated from the ciphertext by using P = Dk(C).
Cryptography enables us to defend from two types of attacks (see Fig. 8.3):

1. Interception: would be extremely difficult. Although the user may be
able to intercept (i.e., read) the message he will only see unintelligible
scrambled data. He would need to obtain access to the key in order to
unlock its contents.
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2. Modification: is even more difficult since the user would not only have
to intercept the message (and decrypt it) but he would then have to
modify it and encrypt it again so the receiver thinks it has come from the
original sender. To do this the modifier would have to know the key and
the algorithm used for encryption.

8.3.2 Types of Encryption

A cryptosystem is used for the encryption and decryption of data, and has
two fundamental approaches, whilst hash functions are one-way mapping of
data to keys. Therefore there are three main categories for encryption:

1. Secret Key (symmetric cryptosystem)
• single key is used to encrypt and decrypt information

2. Public/Private Key (asymmetric cryptosystem)
• two keys are used: one for encryption (public key) and one for decryp-

tion (private key)
3. One-Way Function (hash function)

• Information is encrypted to produce a “digest” of the original infor-
mation that can be used later to prove its authenticity.

8.3.3 Symmetric Cryptosystem

Here, the same key is used for encryption and decryption. Keys can be created
in a number of ways: e.g., they can be generated once and used over and over
again or they can be generated for each session (using session keys in Section
8.5.1). A good example of a symmetric cryptosystem is the Data Encryption
Standard (DES).

The Data Encryption Standard [71] is a widely used method of data en-
cryption using a private (secret) key that was judged so difficult to break by
the U.S. government that it was restricted for exportation to other countries.
There are 72,000,000,000,000,000 (72 quadrillion) or more possible encryption
keys that can be used. For each given message, the key is chosen at random
from among this massive range of keys. Like other private key cryptographic
methods, both the sender and the receiver must know and use the same private
key.

DES applies a 56-bit key to each 64-bit block of data. The process can
run in several modes and involves 16 rounds or operations. Although this
is considered “strong” encryption, many companies use triple DES, which
applies three keys in succession. This is not to say that a DES-encrypted
message cannot be “broken”.

Early in 1997, Rivest-Shamir-Adleman, owners of another encryption ap-
proach (RSA [74]), offered a $10,000 reward for breaking a DES message. A
cooperative effort on the Internet of over 14,000 computer users trying out
various keys finally deciphered the message, discovering the key after running
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through only 18 quadrillion of the 72 quadrillion possible keys! Few messages
sent today with DES encryption are likely to be subject to this kind of code-
breaking effort. Other known symmetrical algorithms are:

• DESX (XORed input), GDES (Generalized DES), RDES (Randomized
DES): all 168 bit key

• RC2, RC4, RC5: variable length up to 2048 bits
• IDEA is the basis of PGP: 128 bit key
• Blowfish: variable length up to 448 bits

8.3.4 Asymmetric Cryptosystem

In asymmetric cryptosystems (better known as public-key systems), the keys
for encryption and decryption are different but together form a unique pair.
These two keys are related, but in theory, knowing one key will not help
you figure out the other. This key pair is termed the private key and the
public key. The private key is known only to the sender and can also be
password protected for enhanced security. The public key, however, can be
widely known. Public-private keys can be used in many different ways.

Public-key encryption essentially allows a user to identify themselves. They
are used to create digital signatures (see Section 8.4), a far more effective
version of our hand written counterpart. They can also be used to encrypt a
message for sending to a specific person (using their public key) since only that
person can read it (using their private key) and vice-versa. A good example
of using public-key cryptography is for mutual authentication, described in
Section 4.7.2.

One popular example of a public-key system is RSA, named after the
inventors Rivest, Shamir and Adleman [74]. The security of RSA is based on
the difficulty of factoring large numbers that are the product of two prime
numbers. This factoring problem has been studied for hundreds of years and
still appears to be intractable. For this reason, people are confident of RSA’s
security, and it has become fundamental to information security. RSA systems
are also easy to use and therefore easy for executives, managers and other
decision-makers, who do not have a technical or mathematical background, to
understand. RSA is widely used today in many of the encryption applications
and protocols in use on the Internet, including:

• Pretty Good Privacy (PGP)
• the Secure Sockets Layer (SSL)
• S/MIME, Secure Electronic Transactions (SET)
• Secure Shell (SSH)
• X. 509 V.3 certificates as used in Jxta, Globus/OGSA
• RSA is also included in major World Wide Web browsers such as Netscape

and Microsoft Internet Explorer. RSA uses modular arithmetic and ele-
mentary number theory to do certain computations. It is based on the fact
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that it is extremely difficult to find the prime factors of large numbers. An
overview of the algorithm is given in the appendix B.

8.3.5 Hash Functions

A hash function is a mapping of a message from any size input message to a
fixed length hash key, which is typically far smaller than the original message.
A cryptographically strong hash key must have the following properties:

• It must be non-reversible: You must not be able to construct the original
message from the hash key

• It must be sensitive to input changes: It must change significantly
with any small change in the input message, even if this change occurs in
a single bit. This is also known as the avalanche effect ; that is, a small
change in the input creates a large change in the output.

• It should be collision resistant: It should be impractical to find two
messages with the same hash key.

Formally, a hash function H takes a message m of arbitrary length as input
and produces a bit string h having a fixed bit-length as output.

h = H(m)

A hash is similar to the extra bits added to a packet in order to perform
error correction. Hash functions are one-way functions, meaning that it is
unfeasible to find the input m that corresponds to a known output h. This is
obvious when you consider the size of the input and output of a hash function.
The output is always the same size (e.g., 128-bit) but the input can be of any
size (e.g., 16 MByte).

MD5 is a good example of a hash function. It was developed by Professor
Ronald L. Rivest of MIT. The MD5 algorithm takes as input a message of
arbitrary length and produces as output a 128-bit “fingerprint” or “message
digest” of the input [75]. It is conjectured that it is computationally unfeasible
to produce two different input messages that map to the same output message
digest, or key.

Hash functions are typically used within digital-signature algorithms,
where a large input file is mapped (and more important, compressed) to
create the basis for the signature (see next section). Another example of a
hash-function algorithm is the SHA-1 [136] secured hash, used extensively
in Chapter 9. SHA-1 keys are non-reversible, collision-resistant and have a a
good avalanche effect. Non-reversibility is a property of hash functions, whilst
collision resistant implies that two different input files will not create the same
key, and the avalanche effect means that two almost identical input files will
create vastly different hash keys. SHA-1 mappings take in one or more blocks
of 512 bits (64 bytes) and create a single 160-bit hash key.

Hash functions also provide a mechanism to verify data integrity, and are
much more reliable than checksum and many other commonly used methods.
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8.4 Signing Messages with a Digital Signature

Asymmetric cryptosystems allow users to digitally sign messages, which allows
a user to establish his/her identity. A hash function is used to create and
verify a digital signature. Hash functions enable the software to create digital
signatures that operate on smaller and more predictable amounts of data, but
still maintain the integrity of the original message content. Therefore, hash
keys provide an extremely concise form of the input data and therefore are
extremely efficient to sign digitally. Figure 8.4 illustrates the signing process.

Message

Digital

Signature

To
Verifier

Hash

Function

Signing

Function

Private
Key

Fig. 8.4. Illustrates how a message is signed using asymmetric cryptosystems.

The signer first delimits precisely what is to be signed within the message
element, i.e., a message, document or data. A hash function is then applied
to this message, which results in a hash code (e.g., a 160-bit SHA-1) unique
to the message content. This hash result is then transformed into a digital
signature using the signer’s private key (i.e., it is encrypted). The resulting
digital signature is therefore unique to both the message and the private key
of the user that created it. The digital signature is typically attached to its
message, either by storing it within a specific format (e.g., X.509 certificate),
or transmitted along with the message.
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Fig. 8.5. Shows how a user verifies another user’s signature.

When a user wishes to verify a digital signature (see Fig. 8.5), he/she
computes a new hash from the original message using the same hash function
as the one used to create the digital signature. The user now can first check
whether the key was signed using the signer’s private key by using the signer’s
public key to decrypt the message. If this succeeds then the user can verify
whether this newly computed hash result matches the hash result extracted
from the digital signature. If they match then the verification is complete.

Verification therefore indicates that the digital signature was created using
the signer’s private key (i.e., he/she is the only person with access to this
key) and that the message was not altered since it was signed (because hash
collisions are considered mathematically improbable). There exist a number
of different mathematical formulas and procedures, but all share this overall
operational pattern.

8.5 Secure Channels

The issue of protecting communication between two participants (i.e., a client
and a server) can be thought of in terms of setting up a secure channel. There
are two methods of encrypting the traffic, described above:
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1. Symmetric Key
2. Public/Private Key.

The following technologies are examples of secure channels:

• Secure Socket Layer: is a standard for encrypted client/server commu-
nication between network devices. A network protocol, SSL runs on top
of TCP/IP. SSL utilizes several standard network security techniques in-
cluding public keys, symmetric keys, and certificates. Web sites commonly
use SSL to guard private information such as credit card numbers.

• Transport Layer Security (TLS): [70] is a protocol that ensures privacy
between communicating applications and their users on the Internet. When
a server and client communicate, TLS ensures that no third party may
eavesdrop or tamper with any message. TLS is the successor to the Secure
Sockets Layer.

8.5.1 Secure Channels Using Symmetric Keys

There are two ways of creating keys for secure channels using symmetric keys:

• shared secret keys
• session key.

Shared secret keys are generated once and secretly passed to the individ-
uals. This can be achieved in a number of ways. For example, they could use
another method of providing a secure channel, e.g., by using public keys, they
could telephone each other to decide on the key or even post it to each other.
An example of a system that uses this technique is Kerberos.

Session keys, on the other hand, have to be dynamically created at run
time. One method involves one of the communicators to generate a key and
to send it via a secure channel to the other participant. This is rather cum-
bersome and incurs much communication overhead for each secure channel
to be created. An alternative method involves dynamically creating the keys
at run time. This can be accomplished by an elegant and widely accepted
method called the Diffie-Hellman key exchange. This is used in many widely
used algorithms such as TLS.

Suppose Tim and Gareth want to share a key; then the protocol works
according to the algorithm in Fig. 8.6. Using this algorithm ensures that
both Tim and Gareth (and only those two), will have the shared secret key
gxy mod n. Note that neither of them needs to make his private number (x
and y, respectively) known to the other.

8.5.2 Secure Channels Using Public/Private Keys

Consider the following situation where secure communication is needed:
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1.  Both choose 2 large numbers, n and g (public)

• subject to certain mathematical properties

2.  Tim chooses secret large random number = x

3.  Gareth chooses secret large random number = y

4.  Tim computes (gx) mod n (public)

• virtually impossible to compute x from gx mod n

5.  Gareth computes gy mod n (public)

6. They exchange public keys (gx) mod n and (gy) mod n

7.  Gareth computes ((gx) mod n)y mod n = gxy mod n

8.  Then, Tim computes ((gy) mod n)x mod n  = gxy mod n

Both now have the shared secret key gxy mod n

Fig. 8.6. The Diffie-Hellman key exchange algorithm.

Tim has just sold Gareth a data projector for £750 through a chat room
and by using email as their only communication channel. Gareth finally sends
Tim a message confirming that he will buy the projector for £750. In addition
to authentication there are another two issues:

• Gareth needs to be assured that Tim will not change the sum of £750
specified in his message to something higher.

• Tim needs to be assured that Gareth cannot deny ever having sent the
message (if he starts to have second thoughts).

One way to accomplish this is by using the following mechanism using
RSA keys.

1. Gareth encrypts the message using his private key.
2. Gareth also encrypts the message (for privacy) using Tim’s public key.
3. Tim can first decrypt the key using his private key then he can use

Gareth’s public key to decrypt the original message from Gareth.

If Tim accepts that Gareth’s public key is in fact his key then this can
only mean that the message came from Gareth. Furthermore, Gareth knows
that Tim has received the message containing the original message because
only Tim can open the message as he is the only person who has access to his
private key.
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8.6 Secure Mobile Code: Creating a Sandbox

Traditionally, you had to trust software before you ran it. You achieved se-
curity by being careful only to use software from trusted sources, and by
regularly scanning for viruses just to make sure things were safe. Once soft-
ware obtains access to your system, it has full rein and if it is malicious, it
could inflict a great deal of damage as there is little protection, other than
certain authorization measures. So, in the traditional security scheme, you
tried to prevent malicious code from ever gaining access to your computer in
the first place.

The sandbox security model makes it easier to work with software that
comes from sources you don’t fully trust. Instead of security being established
by requiring you to prevent any code you don’t trust from ever making its
way onto your computer, the sandbox model lets you welcome code from any
source. A sandbox is a technique by which a downloaded program is executed
in such a way that each of its instructions can be fully controlled. We will
take a look at this here by describing the Java Sandbox [12].

Security Policy

Security Manager

System Resources
(e.g. local disk, sockets to

other computers etc)

Sandbox (local or Remote Code)

Full Access No Access

DomainDomain Domain

Fig. 8.7. The Java Sandbox, which is implemented using a security manager.

The Java Sandbox provides a very restricted environment in which to run
un-trusted code obtained from the open network. In this sandbox model local
code can be trusted to have full access to vital system resources, such as
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the file system, but downloaded remote code (an applet, for example) is not
trusted and can therefore have access only to the limited resources provided
inside the sandbox (unless it is signed). For example, an applet prohibits:

• Reading or writing to the local disk
• Making a network connection to any host, except the host from which the

applet came
• Creating a new process
• Loading a new dynamic library and directly calling a native method.

By making it impossible for downloaded code to perform certain actions,
Java’s security model protects the user from the threat of hostile code. A
security manager (see Fig. 8.7) is responsible for determining which resources
can be accessed. All code, regardless of whether it is local or remote, can be
subject to a security policy enforced by the security manager. The security
policy defines the set of permissions available for code from various signers
or locations and can be configured by a user or a system administrator. Each
permission specifies a permitted access to a particular resource, such as read
and write access to a specified file or directory or connect access to a given
host and port.

The runtime system organizes code into individual domains, each of which
encloses a set of classes whose instances are granted the same set of permis-
sions. A domain can be configured to be equivalent to the sandbox, so applets
can still be run in a restricted environment if the user or the administrator
so chooses. Applications are run unrestricted by default but can optionally be
subject to a security policy. A signed applet is treated like local code, with full
access to resources, if the public key used to verify the signature is trusted.

The Java sandbox model could potentially be used to implement a se-
cure CPU-sharing infrastructure across a P2P environment and extend the
SETI@Home idea to create a generalized heterogeneous CPU-sharing envi-
ronment for Java codes.

8.7 Conclusion

In this chapter, we covered the basics of security in a distributed system. The
different types of security breach were discussed, followed by a description of
the design issues involved in building a distributed security system.

Cryptography, fundamental to security in distributed systems, was dis-
cussed for both the symmetric and asymmetric cases. Hash functions were
discussed and combined with asymmetric cryptography techniques to illus-
trate how a message can be digitally signed.

The concept of a secure channel was introduced, that is, the issue of pro-
tecting communication between two participants (i.e., a client and a server).
A secure channel can be set up using public-key pairs or by using symmetric
keys, e.g., shared secret keys or session keys. Finally, Java sandboxing was
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discussed for protecting the resources to which mobile code may potentially
have access.
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Freenet

This chapter is dedicated to the Freenet distributed information storage sys-
tem. Freenet was chosen to be included because it gives an excellent example
of how many of the techniques discussed so far in this book can be adapted and
used in a practical and innovative system. For example, Freenet works within a
P2P environment (Chapter 2) and addresses the inherently untrustworthy and
unreliable participants within such a network. Freenet is self-organizing and
incorporates a learning algorithm that allows the network to adapt its routing
behaviour based on prior interactions. This algorithm is interestingly simi-
lar to social networking and achieves a power-law (centralized-decentralized)
structure (discussed in Chapter 7) in a self-organizing manner. Such a tech-
nique offers a different perspective on how to efficiently scale P2P networks
(e.g., Gnutella in Chapter 6) to hundred of thousands of nodes.

Freenet was designed from the ground up to provide extensive protec-
tion from hostile attack, from both inside the network and out by addressing
key information privacy issues. Freenet therefore implements various security
strategies that maintain privacy for all participants, regardless of their par-
ticular role. The individual security techniques that are used collectively in
Freenet were discussed in Chapter 8.

This chapter is concise but it provides a relevant real-world application
that integrates many of the technologies described thus far. For a more de-
tailed overview of Freenet see [58], [59] and [61].

9.1 Introduction

Freenet is a decentralized system for storing and retrieving files within a
massively distributed network. Each Freenet participant provides some net-
work storage space and acts as a servent (i.e., both clients and servers as in
Gnutella), both providing storage and requesting it. Freenet differs in philoso-
phy to Gnutella as it gives P2P participants write access to the distributed file
system. Gnutella is a protocol for searching distributed networks and cannot
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be used to propagate files onto the network. Freenet, on the other hand allows
users to store and retrieve files but does not focus on searching the network.
Therefore, to a user, Freenet can be seen as an extension of one’s file system
that provides one with more storage space, whereas Gnutella allows a user to
search and download other users’ files and therefore provides an extension to
the information space.

9.2 Freenet Routing

The key novel feature of Freenet is how it self-organizes its routing behaviour.
The network learns to route better by adapting local routing tables based on
prior experience of successful file retrievals. In this section, the basic mech-
anisms are described for achieving this self-organizing behaviour. The same
algorithm is used for file storage and retrieval, and the network actually learns
according to usage patterns across the network’s participants. For example,
files that are retrieved often will generate more references across the network
and therefore can be located quickly and will not expire (i.e., get deleted). Files
that are not requested regularly can expire because peers can collectively de-
cide to delete them. The next three sections describe the storage, retrieval
and requesting of files, followed by a section on comparing this approach with
other techniques

9.2.1 Populating the Freenet Network

When a file is added to the Freenet network, it is assigned a file key (see
Section 9.3). Each node keeps a local routing table that contains a list of
such keys that are stored on neighbouring peers as illustrated in Fig. 9.1. The
actual storage location for a file is calculated by comparing such keys at each
peer hop to other keys in a peer’s routing table in order to find the peer with
the closest match (see Fig. 9.1). The winning peer, who has the closest key,
is passed the file to store. This process continues for the specified TTL (see
Section 6.2).

Freenet peers can make intelligent decisions about where they think the
data may be. The keys in individual routing tables either identify a file or
a region in the key space for which they are responsible. Therefore, when a
peer receives a request, it redirects it to the neighbouring peer that has the
closest key to the one supplied. In this way, peers become responsible for
regions of the key subspace between themselves and their neighbouring peers
that contain similar keys. The more nodes that join the network, the finer the
granularity of the key space.

Using this technique, similar keys get placed in similar parts of the net-
work, but (as we will find out in the next section) although such keys are
derived from a file’s contents or description, comparisons in the key space
are non-related. This ensures that files get evenly distributed throughout the
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Fig. 9.1. Each peer within Freenet keeps a local routing table that stores file keys
of connected peers. These are used to intelligently route the file storage or retrieval
request.

network. The actual storage location for the file is determined by a number
of factors and files can be replicated across several peers, depending on their
local constraints, e.g., storage space, etc. The actual location(s) for the file is
kept hidden from the user, which is achieved by employing a combination of
random peer behaviour and multiple levels of encryption at each hop as the
data traverses the network.

9.2.2 Self-Organizing Adaptive Behaviour in Freenet

When a file is retrieved from Freenet, it uses the same mechanism as for
storage. Freenet peers adaptively update their routing tables when they suc-
cessfully locate a file somewhere upstream on the network. Therefore, when
a peer forwards the request to a peer that can retrieve the data, then the
address of the upstream peer that contains it is included in the reply. The
peer then updates its local routing table to include the peer that has the
more direct route to the file. The peer can also nominate to store the data
depending on current storage limitations. When a similar request is issued
again, the peer routes the request more effectively. In this way, peers adapt
to usage patterns; i.e., they learn, and they automatically replicate or delete
files based on behaviour of the users within the system.
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Using this mechanism, it has been shown [62] that the Freenet network
converges to a centralized-decentralized model, where only a small number of
nodes have large routing tables and most have small ones. This centralized-
decentralized model has been shown to scale to millions of peers in other
systems, such as Gnutella implementations, e.g., LimeWire [51].

This natural dynamic nature employed by Freenet to update its knowledge
is analogous to the way humans reinforce decisions based on prior experiences.
Remember the Milgrim experiment in Section 7.1? Milgrim noted that 25%
of all requests went through the same person (the local shopkeeper). The
people in this experiment used their experience of the local inhabitants to
attempt to forward the letter to the best person who could help it reach its
destination. Now, the local shopkeeper was a good choice because he knew a
number of out-of-town people and therefore could help the letter get closer to
its destination. If this experiment were repeated using the same people, then
surely the word would spread quickly within Omaha that the shopkeeper is
a good place to forward the letter to and subsequently, the success rate and
efficiency would improve.

Another analogy, given by the Freenet authors, is deciding that since your
friend George answered a question about France then the next time around
perhaps he would be a good choice to ask a question about Belgium.

9.2.3 Requesting Files

When a Freenet peer receives a request for a file, it first checks its own store.
If it has the file then it answers appropriately. If not, it forwards the request
to a peer in its routing table with the closest key to the one requested (see
Section 9.3 for more information on how key correlation is measured). This
continues in this fashion until either the file is found or all possible avenues
have been exhausted within a given radius of the requesting peer, i.e., within
a TTL. Within Freenet, if a request fails, then the user has the option of
choosing a higher TTL and sending the request again. Freenet also supports
mix-net routing algorithms to be applied before normal routing to offer better
security since the TTL can give clues about where in the chain the request is.
Mix-net routing essentially repositions the start of the chain away from the
requester.

Figure 9.2 shows a typical request sequence within Freenet. Here, the re-
quest initiates from peer A. Peer A asks its neighbour (peer B) if it has the
requested file. B does not, so it looks in its routing table and locates the
best-bet peer with the closest key, which happens to be peer F. F looks in its
internal store and also does not have it, and further, it has no access to other
peers. At this stage therefore, it returns a request failed message back to the
requestor (i.e., B).

B does have further options and therefore forwards the request to the peer
with the closest key (peer D). D looks in its internal store, does not find the
file and so forwards the request to peer C. C doesn’t have the file, so forwards
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Fig. 9.2. A request sequence within Freenet.

the request to its closest neighbour (B). At this stage, B notices that it has
seen this request and sends it back to the sending node, C, which in turn
sends it back to peer D.

Peer D now explores further options and forwards the request to node E.
Node E looks in its internal store and finds the requested file and so forwards
this file back to the originator by hopping through all intermediaries. The
intermediary peers update their routing tables accordingly and also each peer
can choose to cache the file locally depending on the distance it is from the
originator and local considerations.

A mixture of local caching and routing table updating is how the Freenet
network learns to provide more effective routing. Such routing therefore, is
based on the popularity of the requested files. As more requests are processed,
the network becomes better trained. The result is a dynamically formed hi-
erarchical routing table that clusters similar keys, which helps to minimize
the number of hops to the data. This is an interesting model, reminiscent
of the ways certain artificial neural networks update their weights between
connections in order to learn particular patterns.

9.2.4 Similarities with Other Peer Organization Techniques

Routing in Freenet is highly dynamic and is a departure from techniques
employed by other systems discussed in previous chapters. For example, in
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Gnutella a user searches the network by broadcasting its request to every node
within a given TTL. Napster, on the other hand, uses a central database that
contains the locations of all files on the network. Gnutella, in its basic form, is
inefficient and Napster, also in its simplest form, is simply not scalable and is
subject to attack due the the centralization of its file indexing. As discussed in
Section 7.8 however, both Napster and Gnutella matured into using multiple
caching servers in order to be able to scale the network.

Such caching services form the basic building block of the Freenet network
since each peer contains a routing table, similar in principle to Gnutella super
peers or Napster indexes. The key difference is that Freenet peers do not store
locations of files at all, rather they contain file keys that indicate the direction
in the key space where the file is likely to be stored.

The routing algorithm used in Freenet has been analysed [62] and a number
of improvements are currently being integrated within Freenet’s Next Gener-
ation Routing algorithm [60]. For example, the current algorithm does not
distinguish between slow nodes at the edges of the network and fast nodes
which are fault tolerant and perhaps connected by T1 or similar links.

9.3 Freenet Keys

All files within Freenet get assigned with a globally unique identifier (GUID)
that uniquely identifies the file. The assigned GUID is used in both the storage
and retrieval of the file and forms the basis for the comparisons used within
the routing algorithm.

Freenet uses a combination of direct and indirect references to files using
three distinct types of GUID keys that ensure data integrity, authentication
and privacy. The keys are computed using a combination of asymmetric cryp-
tographic techniques and hash functions. All hash functions are computed us-
ing using SHA-1 secure hashes, which are described in Section 8.3.5. Freenet
defines three keys:

1. Keyword-Signed Keys (KSK): are the simplest of Freenet keys that
are derived directly from a descriptive string that the user chooses for the
file.

2. Signed-Subspace Keys (SSK): are intended for higher-level human
use, for example, to define ownership, or to make pointers to a file or a
collection of files.

3. Content-Hash Keys (CHK): are used for low-level data storage and
are obtained by hashing the contents of the data to be stored.

The three are analogous to files, directories and inodes on a conventional
file system. For example, the KSK allows you to name a file, just as you would
with a conventional file and this name is used to store and retrieve the file.
However, by only using KSKs, you limit yourself to a flat file system; i.e., it
is similar to putting all of your files in one directory.
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SSKs give a subspace that can act as a container for files. This is similar
to the way we use directories on a conventional file system except that SSKs
are used, in practice, along with the file name, giving the absolute path of the
file. In practice SSHs are used instead of KSK to expand the user namespace.

CHKs are straight hashed versions of the file itself. They identify the
contents of the file and serve as a unique pointer to the file. Similarly, there
is an inode for each file and a file is uniquely identified by the file system on
which it resides and its inode number on that system.

9.3.1 Keyword-Signed Keys

File

Keyword

Signed

Keys (KSK)
Derived from short

file descriptions.

Public

Key

Private

Key

KSK

Descriptive String
Deterministically

Generate

Hash Digitally

Sign

Fig. 9.3. KSK keys are derived directly from a descriptive string for a file.

A Keyword-Signed Key is the simplest type of file key, which is computed
directly from the descriptive string that a user chooses for his/her file. The
descriptive string is used to deterministically create a public/private key
pair. The public half is hashed to give the KSK and the private key is used
to sign the actual file (see Fig. 9.3). This provides a minimal integrity check,
since the user can check whether the retrieved file matches its file key; i.e.,
from the public key, a user can compute the KSK and also check the signature
for the file itself. Files are also encrypted using this descriptive string.

To retrieve the file using the KSK, the user only needs to provide the de-
scriptive string, since he can easily regenerate the rest of the keys because they
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are deterministically generated from this string. However, such keys form a flat
global namespace, analogous to creating a file system without any directories.
The SSK keys in the next section address this issue.

9.3.2 Signed Subspace Keys

An SSK enables a personal namespace to be set up. The namespace can
be used in a number of ways; for example, to store a file, to store multiple
files, to store a file that is split into multiple sections or to point to other
namespaces. In this way, complex multiple-level structures can be created,
similar to directories on a file system. For example, you could create a subspace
called books and make this a container for other SSKs (e.g., fiction and non-
fiction), which could, in turn, be a container for a list of author SSKs, followed
by a list of files containing descriptions of each book.

Signed Subspace

Keys (SSK)

XOR
File

Hash Hash

Hash

PP i tPP i tP i tP i tP i tP i tP i tP i tP i tPrivatePrivatePrivateP i tPrivatePrivatePrivatePrivatePrivatePrivatePrivatePrivatePrivatePrivatePrivatePrivatePrivatePrivatePrivatePrivatePrivatePrivate

Key

lP bllP bliP blP bliP bliP bliP bliP bliPublicP bliP bliPublicPublicPublicPublicPublicPublicPublicPublicPublicPublicPublicPublicPublicPublicPublicPublicPublicPublicPublicPublicPublicPublic

KKKKKKKKKeyKeyKeyKKeyKeyKeyKeyKeyKeyKeyKeyKeyKeyKeyKeyKeyKeyKeyKeyKeyKeyKeyKeyyyyyyyyyyy
Description

Sign

Signed Subspace

Fig. 9.4. Signed subspace keys (SSK) incorporate a description and a namespace
for files.

SSKs are created as follows. First, the user randomly generates an asym-
metric key pair (public/private key) for the subspace. She keeps the private
key private but the public key is made available to other users. This key pair
uniquely identifies the subspace and is highly unlikely to clash with other
subspace keys.
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To insert a file into the subspace, the user provides a descriptive string for
the file. Then, as illustrated in Fig. 9.4, the public key and the file description
are hashed independently, XORed together, then hashed again to give the
SSK for that file. The private key is then used to sign the file, to ensure the
authenticity of the file when it is retrieved. Since SSKs are generated using
hash functions, they are also one-way functions so in order to reconstruct the
SSK, you need the inputs to the function, which are the public key for the
subspace and the descriptive string for the file. From this, you can recalculate
the SSK and locate the file within the system.

However, to store files in a subspace, a user needs to be able to sign the
actual file with the subspace’s private key in order to be able to generate the
correct digital signature. Therefore, subspaces are set up so that anyone can
read from them but only the subspace owner can write; analogous to the way
we add permissions to directories in UNIX file systems.

9.3.3 Content Hash Keys

Content-Hash Keys are computed directly from the file’s contents using SHA-
1 secure hashes (see Section 8.3.5) and hence are called content-hash keys.
A CHK gives each file a unique hash key for each file based on the contents
of that file (since SHA-1 collisions are considered nearly impossible). This is
useful in many contexts, e.g., when updating or splitting files.

For example, in a conventional file system, we label files using file names
and directories. If we change the contents of a file and press the save button,
the file gets overwritten with the new contents and the previous version is
lost forever. However, in Freenet, using CHKs this is impossible because, if
you change the contents of the file, a different CHK will be generated and
consequently, it will get stored in a different part of the network. Therefore,
both versions of the file will remain accessible.

CHKs are generally used in conjunction with SSKs to create indirect files.
Indirect files are created within a two stage process. First, the user inserts the
file using the CHK. He then creates an SSK by pointing to the CHK rather
than to the file itself. Therefore, for retrieval, the user first obtains the CHK
from the SSK subspace and then retrieves the file itself using the CHK.

CHKs are computed directly from the contents of the file and this is inde-
pendent of the originator. This helps to maintain privacy, if desirable. Also,
CHKs help with versioning of files. As mentioned, if a file is modified slightly
then a new CHK will be generated for that file. This ensures that old copies of
the file will not get overwritten but further, if two identical files are inserted
from different participants, then the same GUID will be generated and there-
fore be considered equivalent. This helps avoid unnecessary duplication and
alongside the SSK can ensure appropriate file authentication.
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Fig. 9.5. The construction of a content hash key is simply a secure hash of the
contents of the file.

9.3.4 Clustering Keys

Keys are clustered by comparing their GUID values which are created in
various ways, as described in the three previous sections. However, since they
are constructed using hash keys that have a good avalanche effect (see Section
8.3.5) then key comparisons are completely unrelated to the similarities of
their input. For example, if we are using CHKs and comparing two almost
identical input files, their hash values will be completely different.

This non correlation of Freenet hash comparisons is unimportant and does
not adversely affect the convergence and efficiency of the network. In fact, it
somewhat helps the network because it ensures that files get evenly distributed
across the entire network as a quasi-random set of keys will be produced.
Clustering files within the GUID space results in unbiased decisions about
where the files are actually located.

This property is in practice very useful since setting up such a Freenet
network will normally involve a particular type of data storage and conse-
quently, there may be a number of files with similar content being stored on
the network. If these files were correlated directly to determine where they
would be stored on the network, then such files would converge to a par-
ticular network segment, resulting in a partitioning of data storage with an
uneven distribution across the resource. However, using hash functions pro-
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duces quasi-random representations of the data which are typically spread
across the spectrum and therefore enable a more even distribution across the
mass data storage network.

Such a distribution has been shown [62] to demonstrate good scaling and
fault-tolerant characteristics and, in fact, converge to a power-law (central-
ized/decentralized) structure (see [153] and Section 7.7.3) that exhibits all
the advantages of small-world networks. Freenet therefore has been shown to
scale effectively to hundreds of thousands of nodes.

9.4 Joining the Network
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Fig. 9.6. A scenario about how a new node joins the Freenet network and gets
assigned a GUID that identifies for which proportion of the CHK key space it will
be responsible.

This section briefly describes how a node joins the Freenet network, which
is illustrated in Fig. 9.6. Initially, the new peer creates itself a public-private
key pair (step 1) that is not only used to identify the peer but also to sign its
current physical address reference for security; peers can keep their identities
even though their physical addresses may differ.

Nodes then locate a node in the Freenet network (Step 2). This is achieved
in a similar fashion to the way Gnutella peers locate a node within the network
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(see Section 6.3.1), either by using an IRC, Web site or lists through some
server. The new node sends its public key and physical address to the existing
Freenet node it has discovered (FN1, step 3). FN1 now makes a note of NN’s
identity and forwards this information to other connected peers in a random
fashion by taking entries from its routing table. This continues in this fashion
for the specified TTL.

Once the TTL expires, all nodes in the keychain collectively assign the new
node a GUID, which assigns the new node a part of the key space for which
it will be responsible. This new GUID is calculated using a cryptographic
protocol for shared random number generation, which is designed to prevent
any one participant from biasing the result. The new node is then passed this
new GUID (GUIDn in step 6) and each peer updates its local routing tables
accordingly.

9.5 Conclusion

This chapter gave a brief overview of the Freenet distributed information
storage systems, with the aim of providing a concrete example of how the
many techniques so far described in this book can be integrated into a single
system. Freenet is designed to work within a P2P network and is fault tolerant
to both random peer failures and breaches of security.

It employs an adaptive routing algorithm which updates the information
cached at each peer according to its previous experience of successful queries
or data inserts. The mechanism by which a peer routes queries is based on
comparisons in the key-space domain, which are all calculated using a combi-
nation of hash functions and asymmetric cryptography techniques. Such keys
are therefore unrelated to the input (i.e., file descriptions or file content) and
therefore create a key space in a random fashion that has been shown to uti-
lize the entire network and create a desired power-law distribution of peer
connections across the peers, which can scale to hundreds of thousands of
nodes.

There are three types of keys, which are calculated from: the file descrip-
tion for keyword-signed keys; a subspace and the file description for signed-
subspace keys; and directly from hashing the contents of the file for the
content-hash keys. The construction of these keys illustrates the practical
use of the security mechanisms described earlier in this book.
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Jxta

The Jxta1 middleware is a set of open, generalized peer-to-peer protocols
that allow any connected device (cell phone to PDA, PC to server) on the
network to communicate and collaborate. Jxta is an open-source project that
is developed by a number of contributors and as such, it is still evolving. For
the most recent Jxta Technology Specification, see [15].

The goal of project Jxta is to develop and standardize basic building blocks
and services to enable developers to build and deploy interoperable P2P ser-
vices and applications. The Jxta project intends to address this problem by
providing a simple and generic P2P platform to host any kind of network ser-
vices. The term Jxta is short for juxtapose, as in side by side. It is a recognition
that P2P is juxtaposed to client/server or Web-based computing, which is to-
day’s traditional distributed-computing model. Jxta provides a common set of
open protocols2 and an open-source reference implementation for developing
P2P applications.

10.1 Background: Why Was Project Jxta Started?

Project Jxta was originally conceived by Sun Microsystems, Inc. and designed
with the participation of a small number of experts from academic institutions
and industry. This team identified a number of shortcomings in many existing
P2P systems and set up project Jxta in order to address these. The three
main objectives were to achieve interoperability, platform independence and
ubiquity.
1 I use the lower-case version of Jxta to be consistent with other terms used in this

book; that is, Jxta is not an acronym so I do not spell it as one.
2 The Jxta protocols are open and generalized but they are not standardized.
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10.1.1 Interoperability

Jxta notes that current P2P systems are built for delivering a single type of
services, e.g.:

• Napster provides music file sharing
• Gnutella provides decentralized file sharing
• AIM provides instant messaging
• SETI@Home performs specific computations on specific data. Recently

however, the BOINC project has generalized this into a standard platform
for use by other applications but even in this case it is specific to the CPU
sharing class of applications.

Each software vendor tends to create specific code for each of these ser-
vices, which results in incompatible systems; i.e., they cannot interoperate.
Consequently, there is much duplication in the effort of creating the middle-
ware primitives commonly used by all P2P systems. Project Jxta attempts to
provide a common language that all peers can use to talk to each other.

10.1.2 Platform independence

Jxta technology is designed to be independent of:

1. programming languages, e.g., C or Java
2. system platforms, e.g., Microsoft Windows and UNIX
3. networking platforms (such as TCP/IP or Bluetooth).

This set of criteria solves a number of development issues including code
duplication and incompatibility. For example, many P2P systems offer services
through APIs that are tied to a particular operating system using a specific
networking protocol; i.e., one system might use C++ APIs on Windows over
TCP/IP, whilst another uses a C API hosted on UNIX systems over TCP/IP
but also requiring HTTP. A P2P developer is then forced to choose which
set of APIs to use and consequently, which set of P2P customers to target.
Further, if the developer wants to target both communities then he may have
to develop the services twice, one for each platform (or develop a bridge system
between them).

Jxta achieves programming language and platform independence through
the use of the Jxta protocols being defined in a textual representation (i.e.,
XML) and the networking independence is achieved through the use of Jxta
pipes (described in Section 10.3.3).

It should be noted that Jxta is not original in this respect. A number
of distributed-systems technologies are based on exchanging XML messages,
e.g., Web services. XLM represents a common format that enables applica-
tions to abstract the message format into a programming language-neutral
representation. For example, a SOAP (see Chapter 13)) performs a similar op-
eration, that is, all communications between SOAP endpoints are represented



10.1 Background: Why Was Project Jxta Started? 165

in XML. A Jxta binding or a SOAP processor converts language-specific inter-
nal representations into and out of XML, which enables various programming
languages to interoperate at this textual representation level. As long as you
can map into and out of text, any client or server can encode or decode the
information. Therefore, XML is the key here to interoperability, not Jxta.

10.1.3 Ubiquity
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Fig. 10.1. Jxta networks are designed to work on all kinds of devices, underlying
transport mechanisms and operating systems.

Another problem Jxta addresses is in the limitations of the deployment of
applications to a particular set of devices either due to incompatibility issues
and transport problems or that they are too complicated for particular devices
due to size limitations. Jxta technology is designed to be implementable on
“every device with a digital heartbeat” [15]. For example, devices that could
join a Jxta network include:

1. PDAs
2. phones
3. sensors
4. consumer electronics
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5. network routers
6. appliances
7. desktop computers
8. data-center servers
9. storage systems.

For example, currently many P2P systems tend to choose Microsoft Win-
dows as their target deployment platform (unsurprisingly since this is the
largest installed base and therefore the fastest path to profit) resulting in
many Wintel-specific dependencies. Even though the earliest demonstration
of P2P capabilities are on Wintel machines it is very likely that the greatest
proliferation of P2P technology will occur at the two ends of the spectrum,
e.g., large systems in the enterprise and consumer-oriented small systems.
Current Jxta implementations include:

• Jxta for the Java 2 Platform Standard Edition (J2SE); the reference im-
plementation

• Jxta (JXME) for the Java 2 Platform Micro Edition (J2ME); for MIDP-1.0
compliant devices such as cell phones, PDAs and controllers

• Jxta for Personal JavaTM technology; for devices such as PDAs and Web-
pads

• Jxta for C and other languages such as PERL, Python and Ruby.

This is conceptualised in Fig. 10.1, which shows a number of interconnected
devices, using a number of different transport protocols (e.g., HTTP, TCP/IP,
Bluetooth, etc.) and operating systems.

The most mature implementation is currently in Java but other versions
exist. See the Web site [15] for more information. To date, most other imple-
mentations (e.g., C++/C) only have implemented a small subsection of the
Jxta protocols and can only be used as edge peers. An edge peer is a peer that
cannot function as anything more than a simple Jxta peer; i.e., it cannot be
a Rendezvous or Relay, for example. Here, we will base our discussion on the
Java Jxta version.

10.2 Jxta Overview

Project Jxta defines a set of six protocols that can be used to construct P2P
systems using a centralized, brokered or decentralized approach but its main
aim is to facilitate the creation of decentralized systems. In this section, we
describe these protocols and other components of a Jxta application.

10.2.1 The Jxta Architecture

The Jxta protocols standardize the manner in which peers:
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• Discover each other
• Self-organize into peer groups
• Advertise and discover network services
• Communicate with each other
• Monitor each other.

The Jxta protocols do not require the use of any particular programming
language or operating system; network transport or topology; or authentica-
tion, security or encryption model. The Jxta protocols therefore allow hetero-
geneous devices with completely different software stacks to interoperate.

Figure 10.2 shows that the common layering structure defined by Jxta is
broken down into three layers:

1. Jxta Core: at the lower level is the core layer that deals with peer estab-
lishment, communication management (such as routing) and other low-
level “plumbing”.

2. Jxta Services: second, there is a service layer that deals with higher-
level concepts, such as indexing, searching and file sharing. These services
make heavy use of the plumbing features provided by the core but further,
can be commonly used as components in P2P systems.

3. Jxta Applications: at the upper level, there is an applications layer,
such as file sharing, auctioning and storage systems.

Some features (e.g., security) exist throughout the P2P system (although
in different forms). Jxta technology is designed to provide a thin layer on top
of which services and applications are built using powerful primitives.

Briefly, the Jxta protocols are: the Peer Resolver Protocol (PRP) is the
mechanism by which a peer can send a query to one or more peers, and receive
a response (or multiple responses) to the query. The Peer Discovery Protocol
(PDP) is the mechanism by which a peer can advertise its own resources,
and discover the resources from other peers (peer groups, services, pipes and
additional peers). The Peer Information Protocol (PIP) is the mechanism by
which a peer may obtain status information about other peers, such as state,
uptime, traffic load and capabilities. The Pipe Binding Protocol (PBP) is
used to connect pipes between peers. The Endpoint Routing Protocol (ERP)
is used to route Jxta messages. Finally, the Rendezvous Protocol (RVP) is the
mechanism by which peers can subscribe or be a subscriber to a propagation
service. The Jxta protocols are described in more detail in Section 10.4.

10.2.2 Jxta Peers

A peer is any networked device that implements one or more of the Jxta pro-
tocols (see Fig. 10.3). Each peer operates independently and asynchronously
from all other peers, and is uniquely identified by a Peer ID (identifiers, like
in Gnutella). Peers publish one or more network interfaces (advertisements)
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Fig. 10.2. The Jxta software architecture.

for use with the Jxta protocols, which are passed around the network in data-
grams (messages). Peers can form transient or persistent relationships (peer
groups). Each published interface is advertised as a peer endpoint, which is
used to establish direct point-to-point (but not fixed) connections between two
peers (pipes). These are discussed in more detail in the rest of this section.

A Jxta peer therefore is any entity that can speak the protocols required
of a peer. This is akin to the Internet, where an Internet node is any entity
that can speak the suite of IP protocols. As such, a peer can manifest in the
form of a processor, a process, a machine or a user. Importantly, a peer does
not need to understand all the six protocols as a peer can still perform at a
reduced level if it does not support a protocol.

A Jxta peer, just like a Gnutella servent, can be a client and a server.
Furthermore, Jxta peers can act as rendezvous nodes, which are meeting places
(or lookup servers) for other Jxta nodes.

10.2.3 Identifiers

Jxta uses UUID, a 128-bit datum to refer to an entity (see Fig. 10.3), e.g.,
a peer, an advertisement, a service, etc.; remember Gnutella used the same
mechanism to identify messages, albeit in a cruder form. It is easy to guarantee
that each entity has a unique UUID within a local runtime environment, but
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Peer: any networked device that implements one or more of the

JXTA protocols

Identifiers: each JXTA entity e.g. peer, advert etc has a UUID

identifier

Advertisements: XML structured document that names,

describes, and publishes the existence of a resource e.g. peer,

peer group, pipe, or service.

Messages: sent between peers can be XML or binary

Pipes: messages are sent through virtual pipes

Rendezvous Nodes: caching nodes for advertisements – similar to

the super/ reflector nodes in lecture 4.

Relay Nodes: JXTA routers – help to route messages via

firewalls, NAT systems etc – i.e. they relay the message on

JXTA Terms, at a glance

Peer Group: virtual entity that speaks the set of peer group

protocols

Fig. 10.3. Brief definitions for a number of the key Jxta terms.

because any global state is not assumed, there is no absolute way to provide
a guarantee of uniqueness across an entire community that may consist of
millions of peers. Jxta address this by binding the UUID to other information
such as a name and a network address.

10.2.4 Advertisements

An advertisement is an XML structured document that names, describes, and
publishes the existence of a resource, such as a peer, a peer group, a pipe, or
a service (see Fig. 10.3). Jxta technology defines a basic set of advertisements
but more advertisement subtypes can be formed from these basic types using
XML schemas, or more typically by using the particular language binding,
e.g., in Java, you would subclass the Advertisement class.

10.2.5 Messages

A message is an object that is sent between Jxta peers that can be repre-
sented in either XML or binary format (see Fig. 10.3). The Java binding uses
the binary format to encapsulate the message payload. Services can use the
most appropriate format for that transport. A service that requires a com-
pact representation, for example, for sending scientific data, can use the binary
representation, while other services can use XML.
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A Jxta message is the basic unit of data exchange between peers. Messages
are sent and received using the Pipe Service and routed using the Endpoint
Service. Typically, applications interface with the Pipe Service directly and
the routing is hidden behind the scenes.

A message is a set of name/value pairs represented as an XML document.
The content can be an arbitrary type. The Jxta protocols are specified as
a set of messages exchanged between peers. Each software platform binding
describes how a message is converted to and from a native data structure such
as a Java object or a C structure.

10.2.6 Modules

Jxta modules are an abstraction used to represent any piece of “code” used
to implement a behaviour in a Jxta network (see Fig. 10.3). The module
abstraction does not specify what this “code” is: it can be a Java class, a
Java jar, a dynamic library DLL, a set of XML messages, or a script. The
implementation of the module behavior is left to module implementers. For
example, modules can be used to represent different implementations of a
network service on different operating system platforms in a similar fashion
to Web service implementations (see Chapter 3).

10.3 Jxta Network Overlay

Conceptually, Jxta consists of a collection of peers which interact and are
organized in a number of ways. The organization of Jxta peers is independent
of the underlying physical devices and connectivity (see Fig. 10.4). Here, it
can be seen that Jxta peers are arranged within a virtual overlay which sits on
top of the physical devices, as mentioned in Chapter 1. Peers are not required
to have direct point-to-point network connections between each only (through
the use of pipes) and they can discover each other on the network to form
transient or persistent relationships called peer groups. These concepts are
described in the following two sections.

10.3.1 Peer Groups

A peer group is a virtual entity that speaks the set of peer group protocols
(see Fig. 10.3). Typically, a peer group is a collection of cooperating peers pro-
viding a common set of services; e.g., you could have a file sharing peer group,
a CPU sharing peer group (see Fig. 10.5). Therefore, peer groups are typi-
cally formed and self-organized based upon the mutual interest of peers and
therefore provide a scoping environment for the group. Peer group boundaries
define the search scope when searching for a group’s content.

Peer groups can also be used to create a monitoring environment, moni-
toring a set of peers for any special purpose (heartbeat, traffic introspection,
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Fig. 10.4. The virtual network overlay used within Jxta providing the applications
with a virtual view of the physical underlying network.

accountability, etc.). Peer groups can be password protected and implement
local security policies if secure groups are desired. There is one special group,
called the World Peer Group (the default peer group a peer joins) that in-
cludes all Jxta peers (see Chapter 12).

10.3.2 Rendezvous Nodes

To compensate for the absence of a central service (such as a domain name
server), a Jxta network uses rendezvous peers. Rendezvous peers are volun-
teers that have agreed to act as a meeting point (or a caching server) for
other peers. Rendezvous peers often maintain a permanent (early bound) IP
address, so that other peers can contact them to check the current bindings
of dynamic (late bound) peer endpoints. Rendezvous peers may also keep a
record of other rendezvous peers. Therefore, if you know a rendezvous point
and your friend also knows a rendezvous point, and the two rendezvous points
know each other (directly or through other rendezvous points), you and your
friend can find and reach each other, as illustrated in Fig. 10.5.

Rendezvous nodes can be used to automatically configure intranets by us-
ing multicast but they can be configured as permanent unicast servers also.
Rendezvous points are similar in concept to Gnutella super-peers in that they
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Fig. 10.5. A Jxta group and the relationship between Jxta groups through the use
of rendezvous nodes.

cache the peer advertisements (which can be anything including files) that
peers use to publish the services they offer. Rendezvous nodes therefore, are
an integral part of scalability in Jxta. There can be many rendezvous nodes
per group (as there are super peers within a Gnutella network) and allow the
network to implement a centralized /decentralized network structure. Appli-
cations do not have to worry about these low-level details. Peers just send
search messages to the rendezvous points they know and the Jxta network
will do what’s necessary by itself.

10.3.3 Pipes

Jxta peers use pipes to send messages to each other (see Fig. 10.3). Pipes
are an asynchronous and unidirectional message transfer mechanism used for
service communication. Pipes support the transfer of any object, including
binary code, data strings and Java technology-based objects.

The pipe endpoints (see Fig. 10.6) are referred to as the input pipe (the
receiving end) and the output pipe (the sending end). Messages flow from the
output pipe into the input pipes.

Pipes are virtual communication channels and may connect peers that do
not have a direct physical link. In the example given in the upper section of
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Fig. 10.6, Peer 1 has created a virtual Jxta pipe between itself and Peer 2. The
actual physical route however that this connection travels is through a firewall,
via a desktop (Peer 3 ) and a server (Peer 4 ). The number of intermediaries
used to communicate a message is known as the number of hops.

Further, at each hop of this network a different transport protocol may be
used as pipes are independent of any particular communication mechanism.
To date, there are three implementations: HTTP, TCP and Bluetooth. Pipes
dynamically switch at runtime depending on what is available for use. In
some sense, a pipe can be viewed as an abstract, named message queue that
supports a number of abstract operations such as create, open, close, delete,
send and receive. Pipes offer two modes of communication, point-to-point and
propagate, as seen in the lower part of Fig. 10.6.
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Fig. 10.6. A Jxta pipe is not a fixed one-to-one connection. It can traverse through
multiple hops and networks before the message reaches its destination. Also, the two
types of Jxta pipes, point-to-point and propagate are shown.

A point-to-point pipe connects exactly two pipe endpoints: an input pipe
on one peer receives messages sent from the output pipe of another peer. A
propagate pipe connects one output pipe to multiple input pipes. The Jxta



174 10 Jxta

core also provides secure unicast pipes, a secure variant of the point-to-point
pipe that provides a secure communication channel.

10.3.4 Relay Nodes

A Jxta relay peer is a kind of Jxta router for Jxta messages (see Fig. 10.3).
There are many examples of why these are needed. They can be used to help
traverse firewalls or to help micro-Jxta nodes. For example, the Java Jxta
version for micro devices (e.g., PDAs using J2ME) simply talks to a Jxta relay
(a message relaying peer), which in turn bears most of the message processing
(such as XML authoring for advertisements, sending search messages across
the Jxta network and so forth) and relaying burden. A J2ME-based peer,
together with a Jxta relay, is functionally equivalent to a normal Jxta peer.
Therefore, J2ME peers act as an edge device, sitting on the perimeter of a
Jxta network.

10.4 The Jxta Protocols

The Jxta protocols are a set of six protocols that have been specifically de-
signed for ad hoc, pervasive and multi-hop P2P networking.

Each of the JXTA protocols addresses a specific aspect of P2P networking
that has been identified by the Jxta core design team. A peer can choose
to implement the protocols it wishes and then rely on other peers to provide
them with extra functionality. For example, a peer could rely on a set of known
router peers and not need to implement the Endpoint Routing Protocol or a
peer could elect not to be a Rendezvous because there may be dedicated
persistently connected peers that are known to provide this functionality for
their group.

The Jxta protocols are not totally independent of each other. Each layer
in its protocol stack relies on its layer below to provide connectivity to other
peers (see Fig. 10.7). For example, the Peer Discovery Protocol relies on the
Peer Resolver and Endpoint Routing protocols to transport its messages to
other peers. The six protocols are described briefly, in the next six sections.
For more information see [83] and [15].

10.4.1 The Peer Discovery Protocol

A peer uses the peer discovery protocol to discover a Jxta resource. Jxta re-
sources are described by XML advertisements, as mentioned previously. Note,
that the first word, peer, is the subject and not necessarily the object. Us-
ing this protocol, peers can advertise their own resources, and discover the
resources from other peers.

Jxta does not mandate exactly how discovery is done. It can be decentral-
ized, centralized, or a hybrid of the two. There are two levels of discovery:
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Fig. 10.7. The layering of the six Jxta protocols.

joining a Jxta network and discovering a Jxta resource within a Jxta network.
Further, there are two methods of joining a Jxta network:

1. Multicast: which uses the multicast protocol to a local (or well known)
network, i.e., as soon as a Jxta peer connects to the network, it broadcasts
a presence announcement by sending a multicast packet onto a well-known
port. Other peers monitor this port using multicast requests for appropri-
ate packets and when received, make contact with the other peers.

2. Point-to-Point, i.e., Unicast: which is used when the peer knows the
location of a Jxta peer, typically a rendezvous node (or a collection of
known peers) and therefore can contact it directly. Typically, peers search
for several rendezvous nodes for redundancy.

Once a peer has joined the Jxta network, it can find out about Jxta re-
sources in several ways. For example, a peer can use cascaded discovery; that
is, if a peer discovers a second peer, the first peer can view its horizon and
discover other peers or rendezvous points and so on.

10.4.2 The Peer Resolver Protocol

The peer resolver protocol enables a peer to implement high-level search ca-
pabilities, allowing a peer to send and receive generic queries to find or search
for peers, or other generic advertisements.
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10.4.3 The Peer Information Protocol

This peer information protocol allows peers to learn about the capabilities
and status of other peers, e.g., up time, load, capabilities, etc. For example, a
peer could send a ping message to see if another peer is alive or query a peer’s
properties.

10.4.4 The Pipe Binding Protocol

The pipe binding protocol allows a peer to establish a virtual communication
channel (i.e., a pipe) between one or more peers. It allows the binding of the
two or more ends of the pipe endpoints forming the connection. Specifically,
a peer binds a pipe advertisement to a pipe endpoint to create a virtual
connection. See Section 10.3.3 for more information on pipes.

10.4.5 The Endpoint Routing Protocol

This endpoint routing protocol allows a peer to find information about the
available routes for sending a message to the destination peer, which allows a
message to traverse multiple hops in a flexible way. Peers implementing the
endpoint routing protocol respond to queries with available route information
giving a list of gateways along the route.

10.4.6 The Rendezvous Protocol

The rendezvous protocol allows a peer to send messages to all the listeners
of the service. By default, query messages only reach peers within the same
physical network. The rendezvous protocol defines how a peer can subscribe
or be a subscriber to a propagation service allowing larger communities to
form. A rendezvous node’s scope is a peer group. The rendezvous protocol
allows a peer to propagate messages to all the listeners of the service.

10.5 A Jxta Scenario: Fitting Things Together

A Jxta peer, just like a Gnutella servent, can be a client and a server. Further-
more, Jxta peers can act as rendezvous nodes, which act as meeting places
(or lookup servers) for other Jxta nodes. Figure 10.8 gives a scenario of how
a peer joins a Jxta network, performs a search query and locates a file for
download.

The various Jxta protocols involved in the operation at each stage are
described below:

1. The rendezvous node (RV) accepts connection for nodes 1 to 7 and stores
their advertisements locally.
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Fig. 10.8. A connection scenario for a simple file search using Jxta.

2. A new node then contacts the RV using a discovery mechanism, e.g.,
Unicast/multicast via the peer discovery protocol

3. RV authenticates the new node and adds the new node to the group
4. The new node performs a file search query by contacting the RV to search

for local match or to propagate this query to all other members in the
group. The file is eventually found on node 6. This uses the peer discovery
protocol, the peer resolver protocol and the endpoint routing protocol.

5. The new node and node 6 set up and communicate directly through a Jxta
pipe. This connection is virtual and may actually traverse (route) through
the RV node and node 7. This step uses the pipe binding protocol, the
peer resolver protocol and the endpoint routing protocol.

Note here, that peers can volunteer to become rendezvous peers. They do
this when they join the Jxta network using the Jxta configurator (see Section
12.3.1).

10.6 Jxta Environment Considerations

10.6.1 Security

Jxta does not enforce specific security approaches but provides the following
security primitives:
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• Cryptography: hash functions (e.g., MD5), symmetric encryption algo-
rithms (e.g., RC4) and asymmetric cryptographic algorithms (e.g., Diffie-
Hellman and RSA).

• An authentication framework based on PAM (Pluggable Authentication
Module).

• Password-based login scheme that can be plugged into the PAM frame-
work.

• An access control mechanism based on peer groups; i.e., members of the
group have access to the data offered by another member whereas non-
members do not.

• A transport security mechanism, based on SSL/TLS.

10.6.2 NAT and Firewalls

The wide spread use of NAT and firewalls severely affects many P2P systems
and hence the usability of Jxta. In particular, a peer outside a firewall or a
NAT gateway cannot discover peers inside the firewall or the NAT gateway. In
the absence of asking system administrators to let Jxta traffic through (e.g.,
by opening a specific port), Jxta provides some solutions to this problem.
Specifically, Jxtat peers inside the firewall can contact a relay peer, outside
the firewall, in order to advertise its services. It can then periodically contact
the relay peer to retrieve messages. The relay effectively acts as a broker for
the firewalled peer.

10.7 Comment

It is hard to see how Jxta protocols can compete with the mass of standardized
XML technologies used in Web services and the like. Without widespread
support from the community at large, the momentum will surely be difficult
to sustain, or will it? Many have commented on this approach, for example,
[17].

10.8 Conclusion

The Jxta protocols define how peers can locate, communicate and collaborate
with other peers within multi-hop pervasive P2P networks. Jxta peers can
operate on a wide range of heterogeneous devices, which can run on any
programming language, computer platform or networking protocols, through
the use of XML.

Jxta peers live within a virtual network overlay and are organized in peer
groups. Each peer group can have one or more rendezvous nodes which act as
a local propagation service for advertisements of Jxta resources (e.g., pipes,
peers, services, etc.). Jxta also supports relaying which allows smaller devices
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with limited functionality to join the Jxta network and gives a support mech-
anism for traversing firewalls. A typical file-sharing scenario illustrated how
these mechanisms fit together.



Part III

Middleware Deployment
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In this theme, we look at some of the specifics of programming and de-
ploying applications using distributed-object (Chapter 11), P2P (Chapter 12)
and Web services (Chapter 13) middleware. Together, these represent a broad
section of the domain as most distributed systems are constructed within one
of these areas. Even Grid computing has adopted a Web-services based en-
vironment for exposing its functionality, which we’ll see in the next theme,
“From Web Services to Future Grids.”
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Distributed Object Deployment Using Jini

In this chapter, two specific examples illustrate the use of RMI and Jini.
The focus of this chapter is not to create complicated remote Java services
and therefore give a lesson in Java programming, but rather it is to provide
the reader with the core framework and components needed in order to run
simple RMI and Jini services. Providing complicated services at this stage
simply clouds this issue of understanding the fundamentals of running remote
services.

Therefore, the source is very concise but it gives all the necessary code
needed in order to run and describe remote RMI and Jini services. Such code
can easily be extended to provide as complicated a service as the reader de-
sires. The complete set of examples for this chapter and others can be found
at the following Web site:

http://www.cleverfish.co.uk/peerbook/

On this Web site, there is a complete set of batch files that enable the
reader to set up and run the various services required in order to run these
examples. Such batch files are described in detail for each example. Typically
though, the reader will need to set a few variables in each case specifying
things such as where JINI is installed for example, which is outlined on the
Web page.

Let’s first look at the RMI security which is pervasive throughout the
source code in the rest of this chapter.

11.1 RMI Security

This section briefly describes the role of the security manager for remote code.
This is common to both Jini and RMI and is set using the code:

if (System.getSecurityManager() == null) {

System.setSecurityManager(new RMISecurityManager());
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A security manager protects access to system resources from untrusted
downloaded code running within the virtual machine (i.e., provides basic sand-
boxing capabilities; see Section 8.6). A security manager is needed not only
by the RMI server, but also the client because it is possible that RMI could
be downloading code to the client in a similar fashion to the way an applet
works. Therefore, both applets and Jini clients have to implement a sandbox,
which is a necessary restriction that ensures that all operations performed by
downloaded code are passed through a security layer.

If a security manager is not set then RMI will not function because, with-
out a security manager, RMI will not download classes for objects in remote
method calls1, e.g., parameters, return values or exceptions.

In the examples given here, we simply set the security manager to the
default, which is a similar security policy to that adopted in applets; i.e.,
downloaded code is not allowed to access the local disk or to open sockets to
third party hosts, etc. This can be overridden by either using another Secu-
rityManager or through the use of a policy file to grant specific permissions
(see [82] for more information).

11.2 An RMI Application

We discussed in Section 5.2 that Jini is based on the RMI technology. This
section therefore provides an RMI example to outline the core transport mech-
anism for Jini. In the next section, this is expanded to illustrate how this fits
in with Jini. You’ll notice straight away how similar they are.

This example therefore provides a simple RMI application that outputs
Hello World on a remote machine. It consists of three files:

1. RemoteMessageInterface.java: is the Java RMI proxy object to the
remote implementation of this code. The client calls this locally.

2. RemoteMessage.java: is the remote implementation of the Java proxy
that is run on the remote machine.

3. LocalObject.java: is the local client that calls the Java proxy (Re-
moteMessageInterface), which transmits this call over the network to call
the function in the remote object (RemoteMessage).

11.2.1 The Java Proxy

The RemoteMessageInterface provides a simple interface that allows the user
to invoke a function containing a message argument. This code is implemented
on a server and invoked using the generic RMI mechanism. To extend the
service, simply extend this RemoteMessageInterface with the methods you
require and reimplement these in the server code described in the next section.
1 Other than from the local class path.
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The rest of the code stays exactly the same. The source code for this interface
is given below:

public interface RemoteMessageInterface extends Remote {

public void sendMessage(String message) throws RemoteException;

}

Remote RMI interfaces need to extend java.rmi.Remote. This interface marks
our RemoteMessageInterface as one whose methods can be called from any
virtual machine and therefore has the ability to be located remotely. Fur-
ther, as a member of a remote interface, the sendMessage(String) method
is also a remote method and as such, it must be capable of throwing a
java.rmi.RemoteException.

RMI uses exceptions to handle remote errors, indicating that a commu-
nication failure, an internal method error in sendMessage() or protocol error
has occurred. Remote exceptions are checked at compile time, so this has to
be thrown from any remote method.

11.2.2 The Server

The server code implements our RemoteMessageInterface and therefore pro-
vides the code that sendMessage() will invoke on the remote machine. The
source code is given below:

public class RemoteMessage extends UnicastRemoteObject

implements RemoteMessageInterface {

public RemoteMessage() throws RemoteException {

super();

}

public void sendMessage(String message) {

System.out.println(message);

}

public static void main(String[] args) {

if (System.getSecurityManager() == null) {

System.setSecurityManager(new RMISecurityManager());

}

try {

RemoteMessageInterface rmi = new RemoteMessage();

String name = "//"

+ InetAddress.getLocalHost().getHostName()

+ "/RemoteMessageInterface";

Naming.rebind(name, rmi);

System.out.println("Remote Message bound");

} catch (RemoteException e) {

System.err.println("RemoteMessage exception: "
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+ e.getMessage());

}

}

}

This class implements the RemoteMessageInterface to provide the re-
mote sendMessage() method implementation, which outputs the given
string on the remote machine. This class also extends the class
java.rmi.server.UnicastRemoteObject, which is a convenience RMI class that
can be used as a super class for remote object implementations. This class ba-
sically supplies appropriate remote implementations for the java.lang.Object
methods (e.g., equals, hashCode, toString) along with extra constructors and
static methods used to export a remote object and make it available (via the
RMI registry) to remote clients.

Note though that a remote object implementation does not have to extend
UnicastRemoteObject. However, if it does not then it must supply an appro-
priate implementation of the java.lang.Object methods; otherwise the code
will not compile. It must also provide exporting functions (or link to the ones
in UnicastRemoteObject).

The main() method provides the main RMI mechanism for setting up
and registering this object with the local RMI registry.

First, as in any remote Java implementation, you must set the security
manager for that remote machine (see the RMI Security in Section 11.1 for
details). Next, we create an instance of the RemoteMessage and cast it as
a RemoteMessageInterface (which it implements) so that remote clients can
access this through our defined proxy interface (via the RMI Registry) and
not the implementation.

RemoteMessageInterface rmi = new RemoteMessage();

The RMI registry is a basic remote object name service, which allows remote
clients to gain references to a remote object by using its class name. The
java.rmi.Naming interface is used for binding, registering, or looking up re-
mote objects. The RemoteMessage class creates a name for itself and registers
this in the RMI registry using the following code:

String name = "//" + InetAddress.getLocalHost().getHostName()

+ "/RemoteMessageInterface";

Naming.rebind(name, rmi);

This name includes the host where the registry is located and a name that
identifies the remote object in the registry. The getLocalHost() function dy-
namically obtains the local host name, which works well for our server class
defined here (for clients, see 11.2.3). For more information about how such
names are created, see the RMI Trail of the Java Tutorial [82].

This is added to the RMI registry by using rebind with the name and refer-
ence to the object associated with this name (i.e., our RemoteMessage object,
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rmi) as arguments. During this process, any RemoteExceptions generated are
caught by the corresponding try and catch block.

11.2.3 The Client

The client code gets access to the remote object (via the RemoteMessageIn-
terface) and invokes the sendMessage funtion. The mechanism of how this is
accomplished is given in Fig. 11.1 and is described along with the source code
given below:

public class LocalObject {

public static void main(String args[]) {

if (System.getSecurityManager() == null) {

System.setSecurityManager(new RMISecurityManager());

}

try {

String name = "//"

+ InetAddress.getLocalHost().getHostName() +

"/RemoteMessageInterface";

RemoteMessageInterface rmi =

(RemoteMessageInterface)Naming.lookup(name);

rmi.sendMessage("Hello Remote Machine!!!");

} catch (Exception e) {

System.err.println("LocalObject exception: "

+ e.getMessage());

e.printStackTrace();

}

}

}

At first, the client sets a security manager (see the RMI Security in Section
11.1 for details). Now, since our RMI server program (RemoteMessage) has
registered itself with the remote RMI registry using its implemented remote
interface, RemoteMessageInterface (see Fig. 11.1), the client can now use the
rmi.Naming interface to look up the reference to the remote object (see step
2, in Fig. 11.1). This is achieved using the following code:

String name = "//" + InetAddress.getLocalHost().getHostName() +

"/RemoteMessageInterface";

RemoteMessageInterface rmi =

(RemoteMessageInterface)Naming.lookup(name);

This code is identical to the server because this example is configured to run
the client and the server on ONE machine. Although this is not distributed in
the network sense, the principles are exactly the same. It is easy to reconfigure
the code to insert an IP address of a remote RMI machine if desired. To do
this, the formation of the name will have to be changed to point to the remote
machine directly, for example:
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Fig. 11.1. An overview of how the client gets access to the remote object using
RMI.

String name = "//" + "spectra.astro.cf.ac.uk"

+ "/RemoteMessageInterface";

or better still, pass this as a command line argument to your program:

String name = "//" + args[0] + "/RemoteMessageInterface";

Once a reference to the remote interface has been looked up, the client can
invoke the remote method (see step 3 in Fig. 11.1) as if it were a local method
call, by using:

rmi.sendMessage("Hello Remote Machine!!!");

The next section explains what RMI services you need to run and how you
execute this RMI example.

11.2.4 Setting up the Environment

With any RMI program, you must start an RMI Registry on the machine that
is running the remote service, using the command:

> rmiregistry
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Note that before you start the rmiregistry, you must make sure no CLASS-
PATH is set; i.e., unset the CLASSPATH environment variable. See the Java
Tutorial for a detailed explanation [82]) but briefly, if the rmiregistry can find
your local stub classes, it will forget that the loaded stub class can be loaded
from your server’s code base and subsequently, the client will not be able to
locate and load the stub class or other server-side classes.

There is a convenience batch file for running rmiregistry (runRegistry.bat)
on the Web site. There are also batch files for: compiling and creating the
local stubs file (build.bat); for setting the java.policy file (sets all permissions
granted) and running the RMI Service, RemoteMessage (runRemote.bat); and
for setting the java.policy file and running the RMI client, LocalObject (run-
Local.bat).

Briefly, to run your service, you can use the batch file or run using the
following command:

java -Djava.rmi.server.codebase=file:/./classes

-Djava.rmi.server.hostname=localhost

-Djava.security.policy=./java.policy

-classpath ./classes

RemoteMessage

and to run the client, you would use a similar command:

java -Djava.rmi.server.codebase=file:/.classes/

-Djava.security.policy=java.policy

-classpath classes

LocalObject

and now, on to Jini....

11.3 A Jini Application

This section illustrates how to create a Jini remote service and how a client
might access that service. The actual service, as in the RMI example above, is
very simple. In this example, the remote service method takes no parameters
but returns a String in order to retrieve a message from the remote service.

Again, to extend these interfaces in order to make a more advanced Jini
service is trivial and application specific. For a Java programmer, the frame-
work of how you go about creating and deploying Jini services can be the
majority of the learning step.

Specifically, this example returns a “Hello World” string from the remote
computer. The client uses the Jini lookup service to locate the “Hello World”
service and obtains a Java Proxy (essentially an RMI stub). It makes a call on
this object which remotely executes the specific function in the server code.
As in RMI, you need to implement three files: one interface (or proxy), one
client and one server. As you will see, the actual source code is very similar
to RMI. The files are:
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1. MyService.java: is the Jini service which implements the MyServiceIn-
terface.

2. MyServiceInterface.java: is the interface to the Jini service, i.e., the
Java proxy.

3. MyClient.java: is the local client that calls the Java proxy (MyServi-
ceInterface), which RMI transmits over the network to call the function
in the remote object (i.e., MyService).

11.3.1 The Remote Interface

As with RMI, we start off with the Jini proxy interface for the remote object.
Like RMI, the Jini proxy contains the functionality that the remote object
will provide. The code for this interface is given in the following listing:

public interface MyServiceInterface extends Remote {

public String sayHello () throws RemoteException;

}

As you can see, the only method our remote implementation has to implement
is the sayHello() function which returns a String.

11.3.2 The Server

The remote MyService class implements the MyServiceInterface interface and
provides the necessary calls in order to publish its service to the Jini lookup
server, using the Jini Join protocol (see Section 5.4.2. The source code is given
below:

public class MyService extends UnicastRemoteObject

implements MyServiceInterface {

public MyService () throws RemoteException {

super ();

}

public String sayHello () throws RemoteException {

System.out.println ("MyService: sayHello() called");

return ("Hello World from MyService!");

}

public static void main (String[] args) {

MyServiceInterface myServer;

LookupLocator lookup;

ServiceRegistrar registrar;

ServiceItem serviceItem;

try {
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System.setSecurityManager (new RMISecurityManager());

myService = new MyService ();

Entry[] attr = new Entry[1];

attr[0] = new Name("HelloWorldService");

serviceItem = new ServiceItem(null, myService, attr);

lookup = new LookupLocator ("jini://localhost");

registrar = lookup.getRegistrar();

registrar.register(serviceItem, Lease.FOREVER);

System.out.println("Service Ready ...");

} catch (Exception e) {

System.out.println("MyService.main: Exception " + e);

}

}

}

As in RMI, all Jini services should subclass the server-side RMI implemen-
tation class (java.rmi.server.UnicastRemoteObject) unless they wish to reim-
plement these underlying calls themselves. The first operation of the main
method, as in RMI, sets the security manager to the default RMI manager,
since our transport is RMI. We then create an instance of our Jini service,
MyService that implements the MyServiceInterface proxy interface.

In order to add this Jini service we need to register it with the lookup ser-
vice. The register function expects a ServiceItem object and a lease duration
(see Section 5.4.2). A ServiceItem object has the following parameters:

ServiceItem(ServiceID id, Object service, Entry attrSets)

where:

• id: is a universally unique identifier for registered services (128-bit value).
Service IDs are intended to be generated only by lookup services, not by
clients.

• service: is the object implementing the Jini Service, i.e., a MyService
instance.

• attrSets: are attributes for service represented by a list of objects.

In our example, we use the following code to populate the attribute array
to describe this server. This is used to identify this service when it is registered
with the lookup service:

Entry[] attr = new Entry[1];

attr[0] = new Name("HelloWorldService");

serviceItem = new ServiceItem(null, myServer, attr);
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Note here that the attribute used for lookup is the Jini Name class and we set
its contents to “HelloWorldService”. The service could be advertised, however,
using a number of mechanisms, for example, by using the Java proxy name.
The service item is created by ignoring the ID, using our MyService instance
and the set of attributes that describe this service. Note that this description
is much more sophisticated than in the RMI example as Jini provides much
more sophisticated capabilities for searching for services.

Once we have our service item created, we can locate the lookup server and
populate it with our service. This is achieved by using the Jini LookupLocator
class as follows:

lookup = new LookupLocator ("jini://localhost");

registrar = lookup.getRegistrar();

registrar.register(serviceItem, Lease.FOREVER);

The LookupLocator expects you to pass it a resource that is running a Jini
lookup server address. Jini uses its own protocol for this purpose, i.e., “jini://”.
Following the protocol is the name of the computer hosting the lookup service.
We specify this as the localhost, i.e., this machine. The LUS could easily be
stored elsewhere and specified here in the same way.

Therefore, for this example, we are using the Unicast Discovery mechanism
to find our lookup server. When we have a reference to the lookup server, we
can then get the registrar object and publish our service using the register
method. Here, we register our Jini service and allow the Jini LUS to lease it
forever. The service is now deployed and waiting for use.

11.3.3 The Client

public class MyClient {

public static void main (String[] args) {

Entry[] aeAttributes;

LookupLocator lookup;

ServiceRegistrar registrar;

ServiceTemplate template;

MyServerInterface myServerInterface;

try {

System.setSecurityManager (new RMISecurityManager ());

lookup = new LookupLocator ("jini://localhost");

registrar = lookup.getRegistrar();

aeAttributes = new Entry[1];

aeAttributes[0] = new Name ("HelloWorldService");

template = new ServiceTemplate (null, null, aeAttributes);

myServerInterface =

(MyServerInterface)registrar.lookup(template);
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System.out.println ("Calling sayHello()->"

+ myServerInterface.sayHello () + "<-");

} catch (Exception e) {

System.out.println ("MyClient.main() exception: " + e);

}

}

}

The client code, as in the other examples, sets the security manager to ac-
cess remote objects. It then discovers the Jini lookup service by creating a
LookupLocator object in the same way as with the service:

lookup = new LookupLocator ("jini://localhost");

After obtaining the lookup service’s ServiceRegistrar object, it performs a
search to find the service that has the attribute name of “HelloWorldService”.
This is accomplished in the same way as the service publishes the description
of the service except that rather than creating a ServiceItem object, the client
creates a ServiceTemplate object as follows:

aeAttributes = new Entry[1];

aeAttributes[0] = new Name ("HelloWorldService");

template = new ServiceTemplate (null, null, aeAttributes);

myServerInterface = (MyServerInterface)registrar.lookup(template);

A ServiceTemplate has the following parameters:

public ServiceTemplate(ServiceID serviceID,

java.lang.Class[] serviceTypes,

Entry[] attrSetTemplates)

where:

• serviceID: service ID to match, or null
• serviceTypes: service types (i.e., Java Classes that the service imple-

ments) to match, or null
• attrSetTemplates: attribute set templates to match, or null.

Here, we use the attributes to search for all services that identify them-
selves with the “HelloWorldService” tag. The Jini lookup protocol is invoked
by the lookup method on the ServiceRegistrar object. It service returns the
Jini proxy object to the service, which gives the client direct access to the
remote Jini service.

This is an extremely simple example but forms the basis of programming
with Jini. It can be easily expanded to implement any Jini service you desire.
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11.4 Running Jini Applications

To run Jini applications, you can use the Jini starter kit [79] but in fact, to
run the example given here you actually only need five Jini Jar files from this
kit:

1. jini-core.jar, core Jini functionality
2. jini-ext.jar, Jini lookup functionality (from client)
3. reggie.jar, Jini lookup service
4. reggie-dl.jar, Jini lookup service
5. tools.jar, HTTP server.

Of course, you’ll also need the Java Runtime Environment (JRE) [12]. You
then start three services:

1. an HTTP server: for accessing the remote class files
2. RMID Daemon: which starts on machines where you want to host the

remote Java objects
3. Reggie: the default Jini lookup server.

These are described in more detail in the following 3 sections.

11.4.1 HTTP Server

To run the example, you need to start an HTTP server for communicating
data files between the Jini client/service and the Jini lookup service. There
is a default implementation in the tools.jar jar file supplied with Jini. You
execute it as follows:

java -jar -classpath %JINI_CLASSPATH%

%JINIHOME%\lib\tools.jar -port 8081 -dir

%JINIHOME%\lib -verbose

11.4.2 RMID Daemon

The next step is to start an RMI daemon for executing remote code (if the
Jini service is actually remote). This can be achieved by using the following
command:

rmid -J-Dsun.rmi.activation.execPolicy=none

Also, you can use the following rmid command-line option to enable logging
for debugging purposes:

-J-Djava.rmi.server.logCalls=true
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11.4.3 The Jini Lookup Service

There is a default implementation of a Jini lookup service, called Reggie. This
can be executed by using the following command:

java -jar -classpath %JINI_CLASSPATH%

-Djava.security.policy=%JINIHOME%/example/lookup/policy.all

%JINIHOME%/lib/reggie.jar

http://localhost:8081/reggie-dl.jar

%JINIHOME%/example/lookup/policy.all

reggie_log public

The parameters here specify the various lookup policies and jar files needed.
The details are beyond the scope of this book but you can find more informa-
tion at [80] or the Jini Web site [78].

11.4.4 Running the Service

To run the service, you’ll need to add the Jini Jar files (listed in Section 11.4)
to the Java CLASSPATH, set the security policy and set the codebase to the
address of the HTTP server that you started in Section 11.4.1. Therefore to
run the service (which obviously needs to be started first), you would type in:

java -classpath %JINI_CLASSPATH%;./classes

-Djava.security.policy=policy.all

-Djava.rmi.server.codebase=http://localhost:8080/

MyService

and to run the client the following command would be issued:

java -classpath %JINI_CLASSPATH%;./classes

-Djava.security.policy=policy.all

-Djava.rmi.server.codebase=http://localhost:8080/

MyClient

Note that, as in the RMI example, the Web site listed at the beginning
of this chapter has a number of batch files to help you run these examples.
These are:

1. Compile.bat: which compiles the example and creates the local stubs
file.

2. Setup.bat: which sets up the local environment. This file MUST be edited
to configure your platform correctly; i.e., you must insert the location of
the JRE (RUNTIME JAR in the example below).

3. HTTP-1.bat: which runs the HTTP server for the transportation of the
Java code on the Jini network. This must be run first.

4. RMID-2.bat: is the RMI registry that keeps track of the RMI objects,
currently available on the remote machine.

5. REGGIE-3.bat: is a Jini lookup server.
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6. runService.bat: is a batch file that uses the policy.all file to set up the
security model (all permissions are granted in this example). It then runs
the RMI service, emphRemoteMessage.

7. runClient.bat: also uses the policy.all file to set up the security model
for the client and then runs the RMI client, LocaLObject.

set RUNTIME_JAR=c:\java\jdk1.4\jre\lib\rt.jar set

JINIHOME=.

set JINI_CLASSPATH=.;%RUNTIME_JAR%;

%JINIHOME%\lib\jini-core.jar;

%JINIHOME%\lib\jini-ext.jar;

%JINIHOME%\lib\reggie.jar;

%JINIHOME%\lib\reggie-dl.jar;

%JINIHOME%\lib\tools.jar

11.5 Conclusion

In this chapter, two examples were used to illustrate how one would use the
Remote Method Invocation (RMI) and Jini frameworks for distributing Java
objects. Both examples consist of very simple source code and services that
illustrate the core building blocks necessary for applications working within
these environments.

RMI and Jini are alike, except that Jini has much more comprehensive
searching capabilities, which can be used to locate objects in a much more
distributed and scalable fashion. Jini also integrates other mechanisms essen-
tial for writing robust distributed object-based applications, e.g., distributed
event modelling and object management.
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P2P Deployment Using Jxta

This chapter begins with three specific examples of programming using Jxta’s
Java binding. The code illustrates three examples ranging from simple boot-
strapping code to more advanced pipe-connectivity scenarios. The purpose of
these examples is twofold: to familiarise the reader with what is involved in
Jxta programming; but more important, to discuss what is involved in using
a P2P platform, outlining the fundamental issues that a P2P environment
exhibits.

Therefore, here a number of practical issues are illustrated, such as how
one deals with out-of-date advertisements and what is involved in configuring
peers within a P2P environment. These are discussed and illustrated using
the Jxta mechanisms and its potential solutions. Finally, peer configuration
using the Jxta configurator is illustrated, focusing on the types of settings and
issues it addresses. Each programming example provided here can be found
on the following Web site:

http://www.cleverfish.co.uk/peerbook/

12.1 Jxta Programming: Three Examples Illustrated

There are three Jxta [15] examples illustrated in this section:

1. A simple example that starts the Jxta platform
2. An example that uses the Jxta discovery mechanism to discover Jxta peers

on the network
3. Creating and using Jxta pipes.

Each of these examples is a variation of code that you can find on the
Jxta Web site [15]. 1 The code listed here outlines the main methods and

1 The original code was adapted from various examples, written by Mohamed Ab-
delaziz (jxta.org user name: hamada).
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variables used but does not include comments or Java import commands.
For a complete version of the code see this book’s Web site [18]. Also, when
trying these examples, it is extremely useful to use the on-line JAVADOC
Jxta documentation wherever possible to help understand the meaning of the
various Jxta calls, which can be found at:

http://platform.jxta.org/nonav/java/api/index.html

12.1.1 Starting the Jxta Platform

This simple example primarily illustrates how you can start and use the Jxta
platform from a Java application.

public class StartJxta {

static PeerGroup netPeerGroup = null;

static PeerGroupAdvertisement groupAdvertisement = null;

private DiscoveryService discovery;

private PipeService pipe;

public StartJxta() { }

public static void main(String args[]) {

StartJxta myapp = new StartJxta();

myapp.startJxta();

System.exit(0);

}

private void startJxta() {

try {

netPeerGroup = PeerGroupFactory.newNetPeerGroup();

} catch (PeerGroupException e) {

System.out.println("FATAL: Group Creation Failure");

e.printStackTrace();

System.exit(1);

}

..

}

}

The functionality here is provided in the startJxta method, which is called
from the main program. Here, we create a new net peer group, the default
platform peer group. This function simplifies the method by which applica-
tions can start Jxta. The newNetPeerGroup method is contained in a general
factory class for creating new peer groups, called PeerGroupFactory which
extends java.lang.Object.

In Jxta, there are two subclasses of peer groups:

• Platform: which is used to represent the World group. This group pro-
vides minimum core services needed and every peer, when booting, auto-
matically becomes part of this group.
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• StdPeergroup: which is used to implement all other kinds of peer groups,
which is achieved by using one of the newNetPeerGroup methods: the one
above to create a new default net peer group, or using the newNetPeer-
Group(PeerGroup pg) method and by defining a new PeerGroup object.
Peer group objects allow groups to be customised to define their own set
of customised services. Peer groups can be discovered via the Discovery-
Service protocol.

If you use the newNetPeerGroup() method, a general default peer group is
created. Further, if you enter the minimal information possible into the Jxta
configurator (peer name, user name and password; see Section 12.3.1) then the
peer will attempt to connect to the Jxta site and locate available Rendezvous
peers. Therefore, by default, you can join the worldwide Jxta network and
discover various peers running worldwide.

12.1.2 Discovery

The DiscoverPeers example illustrates how to use the Jxta asynchronous dis-
covery services. Specifically, a peer is created and a DiscoveryListener is at-
tached, which allows this peer to be notified when other peers have been
discovered on the network. The code is as follows:

public class DiscoverPeers implements

Runnable, DiscoveryListener {

static PeerGroup netPeerGroup = null;

static PeerGroupAdvertisement groupAdvertisement = null;

private DiscoveryService discovery;

private int myqueryid;

PeerAdvertisement padv;

public DiscoverPeers() {}

private void startJxta() {

try {

netPeerGroup = PeerGroupFactory.newNetPeerGroup();

} catch ( PeerGroupException e) {

System.out.println("FATAL: Group Creation Failure");

e.printStackTrace();

System.exit(1);

}

discovery = netPeerGroup.getDiscoveryService();

discovery.addDiscoveryListener(this);

}

public void run() {

try {
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discovery.getRemoteAdvertisements(null,

DiscoveryService.PEER, null, null, 1, null);

while (true) {

try {

Thread.sleep(10 * 1000);

} catch(Exception e) {}

System.out.println("Sending a Discovery Message");

discovery.getRemoteAdvertisements( null,

DiscoveryService.PEER, null, null, 15, null);

}

} catch(Exception e) {

e.printStackTrace();

}

}

public void discoveryEvent(DiscoveryEvent ev) {

int adCount=0;

DiscoveryResponseMsg res = ev.getResponse();

Advertisement adv=null;

Enumeration enum = res.getAdvertisements();

if (enum != null ) {

while (enum.hasMoreElements()) {

++adCount;

adv = (Advertisement) enum.nextElement();

String name="NOT A PEER ADVERT";

if (adv instanceof PeerAdvertisement)

name = ((PeerAdvertisement)adv).getName();

System.out.println ("Advert ["

+ adCount + "] from peer : "+ name);

}

}

static public void main(String args[]) {

DiscoverPeers myapp = new DiscoverPeers();

myapp.startJxta();

myapp.run();

}

As in any Jxta program, we first start the Jxta platform (see Section
12.1.1). We then obtain a reference to the Jxta discovery service by using the
netPeerGroup.getDiscoveryService method.

The Jxta DiscoveryService class provides an asynchronous mechanism for
discovering peer, group and other general Jxta Advertisements, e.g., pipes,
services, etc. In this example, we use the discovery service to provide an asyn-
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chronous callback notifications of peer advertisements. There are two methods
that provide this functionality:

• run: to implement the asynchronous callback, we need to multi-thread
the class. This class therefore implements the Runnable interface, which
requires a run method that includes the code that is to be threaded. For
more information on multi-threading using Java, please see the Java Tu-
torial [82].

• discoveryEvent: is the method that must be implemented by any class
that implements the DiscoveryListener interface. The process of attaching
a discovery listener is achieved by the addDiscoveryListener method on
the discovery server class, shown above. This results in creating a callback
mechanism which invokes the discoveryEvent method every time a new
peer is discovered on the network.

The run method creates a separate thread that runs an infinite loop.
Within this loop, the getRemoteAdvertisements method of the discovery ser-
vice is called at one second intervals:

public int getRemoteAdvertisements(

java.lang.String peerid,

int type, java.lang.String attribute,

java.lang.String value,

int threshold,

DiscoveryListener listener)

The parameters for the getRemoteAdvertisements are as follows:

• peerid: the ID of a peer, specifying null results in a propagation to all of
this group rather than discovering an individual peer.

• type: the type of advert we are trying to discover (a PEER, a GROUP or
an generic advert (ADV )). In this example, we specify that we only want
to discover peers. This can be used to dynamically find other peers as and
when they log onto the Jxta network.

• attribute: specifies an attribute that you search for, e.g., “CPU Sharer”.
This enables a user to narrow the search. Specifying null here means find
anything.

• value: is used to specify a value for the attribute parameter, e.g., Pentium
for our CPU Sharer attribute. Wildcards can be used, e.g., Pent* would
return any adverts for Pentium-based processors.

• threshold: specifies the upper limit for the number of responses you want
to receive.

• listener: specifies the listener that will be notified when adverts have been
found. In this example, we specify this using the addDiscoveryListener
method and therefore we set this value to null, i.e., none.

In this example therefore, remote advertisements will be imported every
second. Once local, the asynchronous callback will call the discoveryEvent
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method when new peers join the network. Once received, we can read the
advert as follows:

• The getResponse method returns the response associated with the event
encapsulated within a DiscoveryResponseMsg object.

• The DiscoveryResponseMsg object contains the advertisements which can
be retrieved by its getAdvertisements method. This returns a Java Enu-
meration of Advertisement objects.

• Advertisements are XML documents that contain Jxta adverts in a
platform-neutral manner and can represent peers, peer groups, services,
pipes or other Jxta resources. The Java implementation of Jxta adverts
provides a suite of objects for each specific advert. Therefore, the Java in-
stanceof instruction can be used to determine the specific type of advert.

• If the instance of emphAdvertisment is a PeerAdvertisement then the code
above extracts the name of the peer that issued the advert, otherwise a
default string “NOT A PEER ADVERT” is assigned to the the name
variable.

• The name variable is printed out, either containing the name of the peer
or the default message if this advert originated from something other than
a peer.

12.1.3 Creating Pipes

This a two-part example primarily to illustrate how to create an InputPipe
and OutputPipeListener to send and receive messages.

1. PipeListener.java: a Jxta application that creates an input pipe and
waits forever for messages to arrive.

2. PipeExample.java: an OutputPipeListener is created, which attempts
to resolve the supplied InputPipe. When it has been resolved, a message
is sent through the pipe.

This example is analogous to the socket client and server implementation.
The input pipe is like a socket server and the output pipe is similar to a socket
sender.

There are two ways of creating a pipe advert in JXTA. Either you can
create a dynamic advertisement that produces a different UUID for each pipe
or you can generate an advert once and use this advert for advertising a generic
pipe. By taking the latter approach, you save a lot of confusion with advert
versioning which is discussed in Section 12.3.4.

In this example, a pipe advert (pipexample.adv) is created first (using a
simple Jxta application; see Web site for more details), which looks something
like the following:

<!DOCTYPE jxta:PipeAdvertisement>
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<jxta:PipeAdvertisement xmlns:jxta="http://jxta.org">

<Id>

urn:jxta:uuid-59616261646162614A757874614D504725184

FBC4E5D498AA0919F662E40028B04

</Id>

<Type>

JxtaUnicast

</Type>

<Name>

PipeExample

</Name>

</jxta:PipeAdvertisement>

Note here that first, all Jxta adverts are XML based (to provide the pro-
gramming language independence) and second, that each advert has its own
universally unique identifier. This UUID is crucial for several reasons, e.g., to
avoid looping when routing messages.

The code for the the pipe receiver is as follows:

public class PipeListener implements PipeMsgListener {

static PeerGroup netPeerGroup = null;

private final static String SenderMessage = "PipeListenerMsg";

private PipeService pipe;

private PipeAdvertisement pipeAdv;

private InputPipe pipeIn = null;

public static void main(String args[]) {

PipeListener myapp = new PipeListener();

myapp.startJxta();

myapp.run();

}

private void startJxta() {

try {

netPeerGroup = PeerGroupFactory.newNetPeerGroup();

} catch (PeerGroupException e) {

System.exit(1);

}

pipe = netPeerGroup.getPipeService();

try {

FileInputStream is = new FileInputStream("pipexample.adv");

pipeAdv = (PipeAdvertisement)

AdvertisementFactory.newAdvertisement(

MimeMediaType.XMLUTF8, is);

is.close();

} catch (Exception e) {

System.out.println("failed to read/parse pipe advertisement");

System.exit(-1);
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}

}

public void run() {

try {

pipeIn = pipe.createInputPipe(pipeAdv, this);

} catch (Exception e) {

return;

}

if (pipeIn == null) System.exit(-1);

System.out.println("Waiting for messages on input pipe");

}

public void pipeMsgEvent(PipeMsgEvent event ) {

Message msg=null;

try {

msg = event.getMessage();

if (msg == null) {

return;

}

} catch (Exception e) {

return;

}

MessageElement msgElement =

msg.getMessageElement(null, SenderMessage);

if (msgElement.toString() != null)

System.out.println("Message: "+ msgElement.toString());

}

}

The pipe listener code is the more complex and contains the following
aspects:

1. The startJxta method starts the Jxta platform, as discussed previ-
ously, and gets a reference to the pipe service, via the netPeer-
Group.getPipeService method.

2. The pipexample.adv file is then loaded and converted into a PipeAd-
vertisement object by creating a new advert via the AdvertisementFac-
tory.newAdvertisement method. This method specifies the format, i.e.,
MimeMediaType.XMLUTF8 for the XML text file.

3. The run method is run within a separate thread to create the input pipe by
using the the createInputPipe method of the pipe service. The arguments
take the PipeAdvertisement object created and the PipeMsgListener in-
terface that provides the asynchronous callback of PipeMsgEvent events
through the pipeMsgEvent method. Our PipeListener class implements
this interface and therefore registers itself to receive the pipe adverts.
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4. Within the pipeMsgEvent method, the messages are extracted via the
getMessage method on the PipeMsgEvent events, which are encapsulated
within the Jxta Message object.

5. The message can be retrieved from the Message object using its getMes-
sageElement method that returns a MessageElement by providing the
message id inserted at construction. A MessageElement can then, in turn,
be converted to a string using the standard toString Java method.

The pipe sender is implemented as follows:

public class PipeExample implements Runnable, OutputPipeListener {

static PeerGroup netPeerGroup = null;

private final static String SenderMessage = "PipeListenerMsg";

private PipeService pipe;

private PipeAdvertisement pipeAdv;

public static void main( String args[] ) {

PipeExample myapp = new PipeExample();

myapp.startJxta();

myapp.run();

}

private void startJxta() {

try {

netPeerGroup = PeerGroupFactory.newNetPeerGroup();

} catch ( PeerGroupException e ) { System.exit( -1 ); }

pipe = netPeerGroup.getPipeService();

try {

FileInputStream is = new

FileInputStream( "pipexample.adv" );

pipeAdv = (PipeAdvertisement)

AdvertisementFactory.newAdvertisement(

MimeMediaType.XMLUTF8, is );

is.close();

} catch ( Exception e ) {

System.exit( -1 ); } }

}

public synchronized void run() {

try {

pipe.createOutputPipe( pipeAdv, this );}

} catch ( IOException e ) {

System.exit( -1 );

}

}

public void outputPipeEvent( OutputPipeEvent event ) {

OutputPipe op = event.getOutputPipe();
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Message msg = null;

try {

msg = new Message();

msg.addMessageElement(null,

new StringMessageElement(SenderMessage, "hello", null));

op.send( msg );

} catch ( IOException e ) {

System.exit( -1 );

}

op.close();

}

As with the PipeListener class, the PipeExample starts the Jxta platform and
loads in the advert (in startJxta), using the pipe service.

In a separate thread, to illustrate the output pipe creation, it creates an
output pipe and attaches this class as a listener for such events, via the Output-
PipeListener interface. When the pipe has been created it notifies all listeners
(i.e., our PipeExample class) and calls the outputPipeEvent method.

The outputPipeEvent method then creates a new message by passing a
StringMessageElement, which attaches an id (i.e., the SenderMessage string)
and a simple “hello” message, to the Message’s addMessageElement method.
This message is sent using the OutputPipe send method.

12.2 Running Jxta Applications

To run Jxta applications, you need the Jar files for the core platform, which
are available at the Web site listed above2, or for the most recent version, look
here:

Jar Files: http://download.jxta.org/stablebuilds/

then include the core jar files for the Jxta platform in your class path. These
are:

• jxta.jar
• log4j.jar
• jxtasecurity.jar
• cryptix32.jar
• cryptix-asn1.jar
• minimalBC.jar
• and jxtaptls.jar.
2 The Jxta version used for the examples provided here is 1.x. The current version of

Jxta may differ in syntax and the number/names of Jar files required for running,
but the basic principal is the same.
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12.3 P2P Environment: The Jxta Approach

This section illustrates how Jxta configures a peer with a P2P environment.
There are a number of issues here to deal with including the inherent transient
availability of peers and how one may go about representing a number of
peers on one machine. Jxta provides a solution to this but these issues outline
inherent problems that any P2P middleware needs to be able to address.
Therefore this section, through the use of Jxta, outlines some of these.

12.3.1 Peer Configuration Using Jxta

This first issue within a P2P environment is how to configure a local peer.
This has a number of connotations because there may be a number of peers
running on the same machine, and therefore each peer needs to be individually
identifiable within this environment. In other systems, services are hosted
within a container that provides a hosting environment for outside access;
e.g., OGSA services can be hosted within a J2EE container.

In Jxta, however, they have chosen to allow peers to be self-configurable
and independent of any external hosting environment. Instead they use a
configuration application per peer that allows it to set specific parameters
about how it is hosted and what operations it can perform.

This approach can be more flexible but also has more individual adminis-
trative overhead than allowing a hosting environment to make these decisions
for you. Within a true P2P environment therefore, a number of extra param-
eters that are extremely specific to individual peers have to be specified.

For example, within the Web services/OGSA world, services do not sud-
denly decide to become a lookup service, whereas, within Jxta, this is not only
possible (via Rendezvous) but for some applications it may be essential (e.g.,
in ad hoc wireless sensor networks where a peer may change its role depending
on its battery strength).

These specific settings for a peer are accomplished through the use of the
Jxta configurator application. Since a Jxta peer can operate as a client, a
server and a Rendezvous (Jxta’s lookup mechanism) at the same time, they
all are run in the same way and configure and bootstrap themselves.

With the Jxta configurator application therefore, you can specify to which
port the peer listens, where Rendezvous Peers are, whether this peer will be
operating as a Rendezvous and also which username and password you will
be using to access the network.

At the time of writing, the Jxta configurator consisted of four screens
that allowed the various peer settings to be configured. For detailed on-line
information, please see the latest documents on the Jxta Web site [84] and
[85]. The first screen is shown in Fig. 12.1.

The Peer Name can be set to whatever you want. If you are behind a
firewall, then you need to specify your proxy server.
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Fig. 12.1. Jxta configurator: screen 1.
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Fig. 12.2. Jxta configurator: screen 2.
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The Advanced Settings (see Fig. 12.2) screen is used to set parameters
about the environment in which the peer is running:

1. TCP Settings: by default, TCP is enabled on the default network inter-
face (port 9701). When TCP is enabled, each instance of a Jxta platform is
bound to a specific TCP port number of a given peer. If you select manual
configuration an additional box “always manual” will be displayed. If you
check this box, the configurator screen will be displayed to prompt the
user to manually select the network interface for TCP each time a Jxta
peer is booted (e.g., useful for nodes using DHCP where the IP address
can change). A peer may have multiple network interfaces and so you can
select which network interface should be used from the pull-down menu to
the right. You can also change the port used for TCP (multiple instances
of the Jxta platform can be run on a single peer by using different TCP
port numbers). Finally, if the Jxta peer is located behind NAT, you may
need to specify the public NAT address for this node.

2. HTTP Settings: by default, HTTP is enabled on the default network
interface (port 9700). HTTP must be enabled if the Jxta peer is located
behind a firewall or NAT. If you want to use a different network inter-
face for HTTP, use the pull-down menu to select the desired network
interface (IP address). You can also set port for for HTTP manually as
with TCP/IP. If you’re running Jxta on an intranet (i.e., with no Internet
connection) then this should be disabled.

The Rendezvous/Router settings panel enables you to specify rendezvous
and HTTP relay settings. By default, the Jxta peer does not act as a ren-
dezvous node or a relay. A peer can opt to act as a Rendezvous here and
perform a similar function to super-peers, described in Section 7.4.3. HTTP
relaying is not required unless the peer is connected behind a firewall.

Finally, the last screen (see Fig. 12.4) allows you to enter your user name
and password for this peer on the Jxta network, which allows you to protect
your settings.

12.3.2 Peer Configuration Management Within Jxta

The configurator application creates a local configuration file and identity
directory and the Jxta platform creates a directory for caching advertisements
locally. The directory structure created by a Jxta peer is shown in Fig. 12.5.

When the Jxta Configurator (see Section 12.3.1) is run, it creates a .jxta
directory (see Fig. 12.5). As shown in this screen shot, this directory contains
three significant sections:

1. The PlatformConfig file: stores all of the current configuration settings
that you specify using the Configurator, e.g., TCP/IP port used, whether
this peer is a Rendezvous or a relay, etc.

2. The cm Directory: stores the cached adverts that this peer discovers.
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Fig. 12.3. Jxta configurator: screen 3.

Fig. 12.4. Jxta configurator: screen 4.
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Fig. 12.5. A screen shot of the directories that the Jxta platform creates when it
is bootstrapped.

3. The pse Directory: contains security information, e.g., username and pass-
word are stored in the pse subdirectory.

Configuration information is stored in the current directory in the Plat-
formConfig file, which is used every time the peer runs. If you would like to
re-run the auto-configuration tool, a file named reconf needs to be created in
the current directory (or you can remove the PlatformConfig file).

When running multiple peers on one machine (e.g., you may do this for
the pipe example described in Section 12.1.3, for PipeListener and PipeExam-
ple), the different Jxta applications (i.e., peers) will need to be run in different
directories. This is necessary because each peer needs to use an different TCP
port for its communication and the reliance on the cached directory structure
for the configurator means that you must separate these for each peer. Other-
wise, the configurator will use the previously cached settings and the second
peer created would not be able to bind to the same port.

For example, for the pipe example, the default is 9701 so set the PipeLis-
tener to use this port and run the PipeExample using port 9702.
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12.3.3 Running The Examples

To run these Jxta applications, you must put the Jxta Jar files in your class-
path. These are listed in Section 12.2.

12.3.4 Jxta and P2P Advert Availability

When you are running a Jxta peer, both the availability of adverts and out-of-
date adverts can seem extremely confusing. In this section, we examine some
of the issues involved with adverts in such transient environments. Adverts
may be unavailable for several reasons: e.g., the UDP connection may fail or a
peer may be temporarily unavailable or has disconnected, etc. Further, out-of-
date adverts can also linger around the Rendezvous caches long after the peers
that advertised them have disappeared. Such issues have to be addressed by
any distributed system that has transient connections.

For example, consider the following two scenarios:

1. Intranet File Sharing Application: Here, a company creates a simple Jxta
file sharing application that has a number of persistent servers that contain
files that multiple (and transient) users wish to access on a daily basis.

2. A Chat Application: here, the same company has implemented a decen-
tralized chat application (i.e., similar functionality to ICQ). Here all users
are transient; i.e., they are continually logging on and off.

In the first case, a peer joins the network and will want to discover files in
which it may be interested. Each advert it discovers contains the file name and
location, with respect to the unique peer ID, on the Jxta network. Therefore,
when it logs off, it will certainly want to remember its cached adverts from
previous runs because files on the network will be continually available on the
set of persistent peers.

Therefore, here, the cm directory should not be flushed, as the cache will
remain persistent and will efficiently allow each peer to bootstrap and imme-
diately be aware of all previously accessed files on the network. Therefore, in
this case the peer itself acts as a local cache (i.e., like a super-peer) for the
files in which it is interested.

In the second case however, peers can advertise themselves in a number of
ways, e.g., as a chat service or a pipe3. When a peer joins the network, there
is a high probability that the previously cached adverts are mostly out of
date. For example, other peers may have logged off and then logged back onto
3 In some ways, the use of a Jxta service can be somewhat redundant because

in most cases it can be represented as a pipe. A service provides a labelling
mechanism (i.e., a chat service) along with a pipe (for connection to that chat
service). However, a pipe can itself be advertised as a chat pipe and therefore
we do not have to use the Jxta service framework at all. The difference is only
semantic.
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the network. It is important therefore here to realise that every new advert,
no matter how it is advertised, is unique, due to the unique identifiers being
assigned to the advert.

Therefore, when the peer logs back onto the network and reloads its cache,
these adverts may well be out of date, and not resolve to a living peer. Even
though the peer may advertise itself using a unique name, it will create a
new advert each time it logs on, but each advert can be discovered using this
unique string. This leads to several adverts being discovered for each peer,
but only one will be valid.

12.3.5 Expiration of Adverts

Apart from the existence of invalid adverts, there are reasons why you may
not want to expire adverts that are perceived to be no longer available. For
example, a node might have been temporarily disconnected from the network
but is still available because it has temporarily gone out of range of the wireless
network signal. When such a node returns then its advert (and functionality)
will be available again.

The highly transient nature of the peers within such a network makes it
impossible to retain a current set of valid adverts and therefore, it is important
to account for this type of failure. This situation of out-of-date adverts is
amplified with the introduction of Rendezvous points which are themselves
caching services.

There will always be a trade-off because any accurate management of
valid adverts will surely result in an extremely high overhead of a fine-grained
temporal quantization of checking and updating cached adverts. The update
quantization time would have to be so frequent (i.e., several times a second for
example) that the network would be completely flooded with update requests
and render it completely useless.

Furthermore, such a mechanism could never be completely fault tolerant
free because even if the problem of current availability of adverts were solved,
it would be impossible to tackle the transient connectivity of the peers that
they were advertising. For example, by the time a peer has retrieved this
advert, the service provider for the advert may have left the network making
the advert temporarily (or even permanently) unavailable.

Using systems like Jxta and gaining such experience really amplify the
points raised in the P2P environments chapter (see Chapter 2). Within P2P
or transient networks, it is far easier to deal with failure in a P2P
network than it is to eliminate it.

Invalid adverts can be highly confusing when using Jxta for the first time.
For example, when you are testing your program, you may have forgotten
to flush adverts from a previous run and discover these instead of the new
adverts just advertised. In this case, your program may intermittently fail
and seem to exhibit somewhat inconsistent behaviour, i.e., since sometimes
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it could work and other times not, depending on the ordering of the cached
adverts.

12.4 Conclusion

In this chapter, three simple Jxta applications were illustrated to give the
reader a feel for what the Jxta programming environment is like. Due to
the P2P environment Jxta is designed to work within, there are a number
of configuration and inevitable failure issues with which such a system must
be able to deal. To this end, each Jxta node has a configurator application
to help it specify what role it is playing within the network (e.g., a peer, a
Rendezvous, a relay, etc.) and how it connects to the other peers within the
network.

The Jxta approach is flexible but extremely fine grained because each
peer is required to manage its own settings. Other systems (e.g. Web services,
see Chapter 13) deploy services within hosting environments which perform
a lot of this kind of housekeeping for you. Such systems however, do lose
the individual configurability, which may be important in certain deployment
conditions.

The transient nature of P2P networks was illustrated later in this chapter
when the issue of advert availability was addressed. Adverts in such highly
dynamic networks are likely to fail sometimes because they may be out of
date or the resource they are advertising may be temporarily or permanently
unavailable. These issues illustrate the importance of dealing with failure as
a normal occurrence in such networks.
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Web Services Deployment

The basic building blocks for using Web services are the service-oriented archi-
tecture (SOA) and Internet protocols. Web services are based on standards
and standards-based technologies, which ensure applications are compliant,
thereby enabling program-to-program interoperability. Within an SOA, such
services can be represented, advertised, discovered and communicated within
a dynamic environment. In this chapter, the standardized Web service tech-
nologies, SOAP, WSDL and UDDI that can enable such an environment, are
outlined. Further, a short overview of how such technologies can be installed
and used within a popular hosting environment is given.

13.1 SOAP

The submission of SOAP v1.1 to the WC3 (by 11 vendors in May 2000)1 and
the subsequent starting of the XML Protocols Working Group were signifi-
cant events in the Web services history. Since then, the software industry has
entered a consolidation phase and begun to broadly adopt the use of SOAP,
WSDL and UDDI. SOAP v1.2 reached recommendation status in June 2003,
which is the highest recommendation of a standard that the WC3 can give.2

To illustrate the level of support, SOAP has currently been implemented in
over 60 languages on over 20 platforms.

Simple Object Access Protocol (SOAP) is a “protocol that can be used to
exchange structured information in a decentralized, distributed environment”
[92]. It is a simple protocol that you may use, but not necessarily need to
write, which allows users exchange information in a lightweight fashion, re-
quiring a minimal amount of overhead. It provides an XML format for sending
1 UserLand, Ariba, Commerce One, Compaq, Developmentor, HP, IBM, IONA,

Lotus, Microsoft and SAP
2 However, WC3 does not call its specifications standards because it does not have

the official standing of a standards organization, such as the International Orga-
nization for Standardization.
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messages which is independent of programming language or computer plat-
form. It also allows this communication to occur over HTTP, which simplifies
things greatly; e.g., it helps with firewalls and simplifies communication (i.e.,
you don’t need socket servers listening on oddly numbered ports).

13.1.1 Just Like Sending a Letter. . .

XML

Document

SOAP Envelope

SOAP Request

SOAP

Client

SOAP

Server

XML

Document

SOAP Intermediary

Fig. 13.1. SOAP provides an envelope for the XML message, just like a real enve-
lope.

A SOAP message is analogous to a letter, as depicted in Fig. 13.1. First
you write a letter and then put it in an envelope, which includes the receiver’s
address and other routing information (e.g., specifying air mail), plus a stamp
representing a means of payment.

In SOAP, you write a document, just like a letter but it is written in
XML. Then you pop your XML document into a SOAP envelope. The SOAP
envelope contains your document (in the body element) along with a header
that can contain optional routing and security information; it could be used
to add the name or identification of the sender for example (just as real letters
that are sent to the United States have to).

The SOAP envelope basically allows you to wrap everything up in a conve-
nient format without needing to alter the XML document that is being sent,
just like our paper envelope counterpart.
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Once the envelope has been created, it is converted into a SOAP request
and passed to a SOAP client for delivery; just like putting our letter in a post
box. The SOAP client takes this message and delivers it to the destination.
Such a delivery may traverse several intermediate SOAP servers before it
reaches its destination, just as a letter may be transported by bus then a plane,
for example. The actual route the SOAP message travels through depends
on the (optional) routing information that may have been included in the
message header, e.g., like specifying Air Mail will, it is hoped, make your
letter fly across to its destination.

When the SOAP message reaches its destination, it is handled by a re-
ceiver, i.e., a SOAP server. The SOAP server performs extra operations than
our letter box counterpart however, as it unwraps the envelope for you and
passes the Web service the message via whatever means it needs.

13.1.2 Web Services Architecture with SOAP

Web services enable service virtualization by separating the Web service in-
terface, which is represented by WSDL (see Section 13.2.3), from the service
implementation. There could potentially exist a number of implementations
for a service that, for example, could enable it to work on various computer
platforms. Web services remove these underlying technicalities and users only
deal with the service interface and are not aware of or interested in how the
functionality is implemented.

The glue that binds the implementation with the interface and specifies
the data format (e.g., SOAP) and protocols (e.g., HTTP) for communicating
with the service is defined in a separate section in the WSDL document.
Typically, you define one interface and then insert the various bindings that
that interface supports.

This architecture is illustrated in Fig. 13.3, which builds on the model de-
scribed in Section 3.2.2. Here, a C++ client is invoking a Web service written
in Java. The figure also gives the details of the various stages and how they
relate to SOAP. SOAP messages are delivered from a client to a SOAP server
in the following way:

• The user prepares a message that conforms to the service interface (i.e.,
the WSDL). For example, the service may have several input elements
and therefore the message has to be formatted appropriately in order to
convey this information correctly. This typically involves building up a
list of variables or strings in the client’s language (e.g., C++ here) in
preparation.

• The user sends this message to the Web service:
– The client sends the request to the SOAP client, typically as a method

call (in this case in C++). Programmers never really need to deal with
the XML directly; there are numerous utilities that do this for you.
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Fig. 13.2. An overview of how a message gets sent from a client to a Web service
using SOAP.

– The SOAP client takes this request and converts it into an XML mes-
sage.

– The SOAP client then puts this message into the body of a SOAP
envelope and populates the other elements with optional information
provided by the user.

– The SOAP client then makes a SOAP request document, which adds
things like destination and transport protocols to the SOAP message
and sends this to the receiving SOAP server.

– The SOAP server then transforms this XML message back to a
language-dependent representation. For example, it could convert the
XML to Java to invoke a function call within a Java class that imple-
ments the service.3

• The SOAP server then uses the same mechanisms to send the response, if
there is any, from the Web service back to the client.
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Fig. 13.3. The anatomy of a SOAP message.

13.1.3 The Anatomy of a SOAP Message

A SOAP message is an XML document containing the following elements, as
shown in Fig. 13.3:

1. An Envelope that identifies the XML document as a SOAP message (re-
quired).

2. A Header element that contains information about the request defined
in the SOAP body. For example, it might contain security, contextual or
user profile information (optional).

3. A Body element that contains the actual Payload Document, containing
the request and response in XML format (required).

4. A Fault element that provides error information that may have occurred
while processing the message (optional).

In the example below, a request/response message for obtaining the price
of a CD from a fictional CD retailer is given. In this example, we show a
SOAP message with a Header element and a Body element:

<SOAP:Envelope

xmlns:SOAP="http://schemas.xmlsoap.org/soap/envelope/"

SOAP:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"

<SOAP:Header>

<person:mail

3 You may have surmised by now that implementations of the Web are quite simple
because the underlying infrastructure takes care of a number of housekeeping
issues.



222 13 Web Services Deployment

xmlns:fan="//http://www.ibycds.com/">tapfan@ibycds.com

</person:mail>

</SOAP:Header>

<SOAP:Body>

<m:getCDPrice xmlns:m="http://www.islcds.com/">

<name xsi:type="xsd:string">Smell the Glove</name>

</m:getCDPrice>

</SOAP:Body>

</SOAP:Envelope>

A SOAP Envelope normally requires defining two basic namespaces for the
envelope and for the encoding, as shown. The namespace for the envelope (this
is SOAP 1.1) must be included as it identifies the message as a SOAP message.
Messages that do not follow this namespace declaration are considered invalid.
Here, a namespace is also given for the encoding style, which represents the
data used in the message.

The Header element is optional, but if included, must also be namespace
qualified. Namespaces are analogous to Java packages: Java packages give a
Java class a namespace in order to differentiate it from a class with the same
name in a different package. Java classes are therefore grouped into packages
by functionality, whereas namespaces just provide a unique context for an
element. Here, the body contains information about the buyer of the CD.

The Body element is required and specifies the payload intended for the
receiver of the message. Here it contains a procedure, called getCDPrice, which
accepts one argument to specify the name of the CD for which you wish to
obtain the price. The argument is typed as a string.

The example here provides only a brief overview. For a comprehensive
description of SOAP documents, see [92] or [188].

13.2 WSDL

The Web Services Description Language (WSDL) is “an XML format for
describing network services as a set of endpoints operating on messages con-
taining either document-oriented or procedural-oriented information” [101].
WSDL describes an abstract interface for Web services while simultaneously
allowing you to bind to a specific transport mechanism, such as HTTP. WSDL
functions as a reusable Web service technology by abstracting the interface
and providing a transport binding mechanism; i.e., the transport may change,
but the payload persists. There are similar techniques employed in other tech-
nologies, e.g., Jxta pipes 10.3.3.

WSDL was developed by Microsoft, Ariba and IBM and V1.1 of the speci-
fication was accepted as a note and published on the Web site [101] and [104].
Twenty-two other companies then joined the submission (the largest number
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to date to support a joint submission) and therefore WSDL already has broad
support.

WSDL documents can be flexibly organized by using the import element,
which allows other files to be imported (e.g., other WSDL documents or XML
schemas). When composing a WSDL document, the various sections (typically
two or three) can be composed completely independently and then combined
(or more important, reused) to form complete WSDL files. For example, two
WSDL documents can import the same basic elements and yet include their
own service elements to make the same service available at two physical ad-
dresses. WSDL documents are divided into two broad sections:

• A Service Description: an abstract definition for a set of operations
and messages. The service description is reusable and contains information
common to a certain category of services, such as message formats and port
types (abstract interfaces).

• The Implementation Details: define how the interface maps onto the
underlying concrete protocol binding and a network endpoint specification
for the binding.

The following two sections give an overview of the contents of these two
broad sections of a WSDL file. This is followed by giving a more in-depth
anatomical description of a WSDL file, illustrating the various XML sections.

13.2.1 Service Description

Web service interfaces are defined in WSDL by using a portType XML element
(illustrated in Section 13.2.3). The portType element in programming terms,
is analogous to an object-oriented class as shown in Fig. 13.4. PortTypes
consist of a collection of operation elements, each of which defines a specific
function of the portType. In programming terms, this would be analogous to
a method in a class.

Finally, within each operation you have associated messages, which are
defined in a separate WSDL message element. The message element is an ab-
stract definition of the data along with its data types and describes a one-way
message, whether it is a single message request (input) or a single message
response (output). It defines the name of the message and contains zero or
more message part elements, which can refer to message parameters or mes-
sage return values.

Each message has a type that can be specified by a schema (e.g., XSD)
or can be composed arbitrarily to form complex types. Standard types can
be inserted directly into the message section, whilst more custom types, e.g.,
complex types, are declared within the types WSDL element. The message
elements are analogous to arguments passed to and from a method or function
call.
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portType
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Fig. 13.4. The WSDL portType element contains operations that have input and
(optionally) output arguments.

13.2.2 Implementation Details

There are three WSDL document elements that are used to bind the abstract
interface to concrete endpoints:

• Service: is a collection or set of related endpoints (i.e., ports).
• Port: is a single endpoint that consists of a binding and a network ad-

dress.
• Binding: is a protocol and data format specification for a particular port-

Type.

A WSDL document defines a service as collections of network endpoints,
or ports. A port is defined by associating a network address with a specific
network binding or data format and different ports of a service can be located
at geographically different locations. WSDL has specific binding extensions
for the following protocols and message formats:

1. SOAP
2. HTTP GET/POST
3. MIME.

For example, Fig. 13.5 shows an interaction between a client and a server
in a Web services scenario. In the first case, the Web service is invoked using
a WSDL SOAP binding and the SOAP HTTP transport binding. The second
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Fig. 13.5. An example of transport bindings that can be specified for WSDL.

scenario illustrates that the same Web service is invoked using the the WSDL
HTTP GET/POST protocol binding.

WSDL makes a clear distinction between messages and ports. Messages
define the abstract syntax and semantics of a Web service and are required.
Ports, on the other hand, are concrete as they specify the network address
where the Web service can be invoked. Ports are optional elements and there-
fore a WSDL file could contain just the abstract interface information and
may not refer to any concrete implementation; i.e., WSDL files are decoupled
from implementations and there can be multiple implementations of a single
WSDL interface.

This design allows disparate systems to write implementations of the same
abstract interface, thereby guaranteeing that the systems can talk to each
other, as discussed in detail in Section 3.2.2.

13.2.3 Anatomy of a WSDL Document

In this section, an explanation of a simple WSDL file is given. For a compre-
hensive description, see [101].

Just as SOAP messages are encapsulated by an Envelope element, WSDL
documents are encapsulated within an element called definitions. WSDL docu-
ments consist of a set of definitions, and although WSDL has seven definitions,
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types: custom data types that the service 
receive and send

message: message to be transmitted

portType: an interface, defining behaviour and
which operations it supports

binding: specify the protocols and message 
format of how the web service will be invoked

service: the location of the service as a set of 
Endpoints (ports)

WSDL Definitions:

Fig. 13.6. An overview of a WSDL document.

a document is split into five main sections, illustrated in Fig. 13.6. The other
two elements are import, described earlier and documentation, which can be
used to provide human-readable documentation and can be included inside
any WSDL element.

As part of the definitions tag itself, we first need to set up the namespaces,
which give a context for elements:

<definitions name="SimpleService"

targetNamespace="http://cleverfish.co.uk/wsdl/SimpleService.wsdl"

xmlns="http://schemas.xmlsoap.org/wsdl/"

xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"

xmlns:tns="http://cleverfish.co.uk/wsdl/SimpleService.wsdl"

xmlns:xsd="http://www.w3.org/2001/XMLSchema">

In WSDL, namespaces are typically specified as a URI because URIs
are unique. However, in fact, namespaces do not have to be URIs
at all. For example, the first element shown above specifies a tar-
getNamespace attribute. The targetNamespace is a convention of XML
schema that enables the WSDL document to refer to itself. However,
this address, “http://cleverfish.co.uk/wsdl/SimpleService.wsdl” does not ac-
tually have to exist; it’s just a placeholder for the uniqueness of this
document. The definitions element also specifies a default namespace
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(xmlns=http://schemas.xmlsoap.org/wsdl/ ), which gets attached to any el-
ement that hasn’t defined one, such as the message or portType.

The types section is optional and depends on the complexity of the data-
typing needs for the Web service. If you were defining a customer record,
for example, then several typed fields would be needed, e.g., name, address,
telephone number, etc, and therefore, this would have to be set up as a complex
type. However, for a simple message, it could be defined using the following:

<message name="MyRequest">

<part name="myRequestString" type="xsd:string"/>

</message>

<message name="MyResponse">

<part name="myResponseString" type="xsd:string"/>

</message>

Here, the input and output types are defined using the simple XSD typ-
ing mechanism [99]. The xsd prefix identifies the message part as a string
(xsd:string).

The portType tag defines an interface and the operations it supports, for
example:

<portType name="RequestPortType">

<operation name="aRequest">

<input message="tns:MyRequest"/>

<output message="tns:MyResponse"/>

</operation>

</portType>

Here, the operation (aRequest) accepts an input message (MyRequest)
and responds with an output message (MyResponse) and since we defined
the types in the message definition, they are typed as strings. Note that the
input and output messages to this operation are namespace qualified, using
tns defined earlier.

The binding section of the file specifies how the portType operation will
be transmitted on the wire, i.e., using any of the bindings described in Section
13.2.2. Here, we use the SOAP binding:

<binding name="aBinding" type="tns: RequestPortType">

<soap:binding style="document"

transport="http://schemas.xmlsoap.org/soap/http"/>

<operation name="aRequest">

<soap:operation soapAction="aRequest"/>

<input>

<soap:body use="literal"/>

</input>

<output>

<soap:body use="literal"/>

</output>

</operation>
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</binding>

The binding is given a name (any) and a type, which is the portType that
was defined earlier; i.e., we are specifying a binding for a portType. There can
be any number of bindings for a specified portType.

SOAP is specified using the soap:binding element, which specifies a style
attribute. There are two styles, either RPC-oriented or document-oriented. In
the RPC case, the messages contain parameter and return values, whereas in
the document style, the messages contain documents. The document style is
used here.

The transport attribute specifies the transport binding for the SOAP pro-
tocol, e.g., HTTP in this case. The soap:operation element defines a SOAP
action for the operations defined within the portType. Finally, for each oper-
ation a soap:body is specified, which defines how the message elements appear
in the SOAP body element. The use attribute defines whether the message
element is encoded using any encoding rules. Here, we chose a literal coding,
i.e., no encoding rules.

The service definition specifies the location of the service:

<service name="MyService">

<documentation>A do-not-a-lot service</documentation>

<port binding="tns:aBinding" name="MyPort">

<soap:address

location="http://localhost:8080/axis/services"/>

</port>

</service>

</definitions>

The MyService is bound to SOAP, so therefore the soap:address element is
used to specify the URL, in this case, to the local Tomcat/Axis server running
the service.

13.3 UDDI

Universal description, discovery and integration [100] is a service discovery
protocol for Web services. It provides an on-line electronic registry, which
serves as a kind of electronic yellow pages that allows applications to dy-
namically provide information about companies and the (Web) services that
they offer. It provides a similar role to the Web service business community
that a Jini lookup server does for the Jini Service community but whereas
Jini is designed for the intranet, UDDI and Web services are designed for the
Internet.

UDDI is a cross-industry effort driven by commercial sectors and the OA-
SIS standards organization [167]. The UDDI standard was unveiled by Ariba,
IBM, Microsoft and 33 other companies in September 2000.
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The UDDI XML schema defines four core data types for business and ser-
vice information each having an XML-based data structure containing manda-
tory and optional fields. They are called businessEntity, businessService, bind-
ingTemplate and tModel. These core types can be used to represent three types
of information:

• White Pages: which contain addresses, contacts, and other general in-
formation about a company or individual. So, for example, you could use
this to search for a company that you already knew something about, e.g.,
its name or address, etc.

• Yellow Pages: this contains industrial classifications based on some stan-
dardized taxonomies, such as the North American Industry Classification
System (NAICS) [168].

• Green Pages: contains technical information about Web services includ-
ing references to specifications of interfaces for Web services.

Both WSDL and UDDI were designed to clearly delineate between ab-
stract metadata and concrete implementations. In a typical usage scenario, a
programmer contacts the UDDI’s green pages to discover a Web service using
some search mechanism. She would then extract the location of its WSDL
definition from UDDI, which contains the service’s abstract interface along
with its network address.

For best practice techniques, there exists a document [169] that gives a
detailed account of using WSDL in a UDDI registry.

13.4 Using Web Services

In this section, a brief overview is given on how to install Axis, a Web services
hosting platform. A simple example Web service is given along with scripts
necessary to deploy and invoke that service within the Axis environment. The
notes here are brief but serve as a concise illustration of how Web services are
developed and how they interact within the Web services environment.

13.4.1 Axis Installation

Apache Axis [189] is an open source implementation of a SOAP engine. It
provides a framework for constructing SOAP processors, such as clients and
servers, and contains implementations of such. Specifically, it has an imple-
mentation of a server that plugs into servlet engines so that Web services can
be hosted using traditional Web server frameworks. It also supports WSDL
(v.1.1) and creates a WSDL file for each Web service deployed using the plat-
form. The Axis version used here (1.1) is written in Java but a C++ client-side
implementation is also under development, at the time of writing.

In order to run Axis, you need to install (or have) an application server
or servlet engine. Here, Jakarta Tomcat is used (version 4.1.x but not the LE
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version) and is executed using Java 1.4 (which has the Xerces XML parser).
The following list describes the installation process:

1. Download and install Tomcat; see [190] and its various dependencies; it
will be assumed that Tomcat is installed in /usr/tomcat/.

2. Download and install Apache Axis; see [189]; in the configuration here,
Axis is installed in the /usr/axis directory.

3. In the Tomcat installation, there is a directory where Web applications
are placed (/usr/tomcat/webapps). Copy the Axis /usr/axis/webapps/axis
here.

4. Start Tomcat (see below); it will, by default, run locally on port 8080
5. Go to the Axis home page on the server at http://localhost:8080/axis/.

You should see a screen similar to the one displayed at the top of Fig.
13.8.

6. Press the first tag named Validate the local installation’s configuration.
This page will list the various dependencies needed for a correct instal-
lation (see Fig. 13.7). If there are problems, it will list them and provide
solutions. Step through these one by one and reload this page to check
that each problem has been solved.

Fig. 13.7. A happiness page for the Axis installation.
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In the /usr/tomcat/webapps) directory, there is a WEB-INF sub-directory,
which contains the basic configuration information and sub-directories that
contain, amongst other things, the Java libraries (in lib and the Web service
classes to be deployed (in classes, see Section 13.4.2).

At this stage, some environment variables need to be set up to specify
things like the Axis home directory, the library directory and the Java class-
path needed for the compilation of this example. Below, a snippet from .tcshrc
is given that shows how the various jar files from the /usr/tomcat/webapps/lib
directory are added to the classpath. Further, the PATH environment variable
is updated for easy access to the start-up scripts for the Tomcat Web server:

setenv AXIS_HOME /usr/tomcat/webapps/axis

setenv AXIS_LIB $AXIS_HOME/WEB-INF/lib

setenv AXISCLASSPATH $AXIS_LIB/axis.jar:

$AXIS_LIB/commons-discovery.jar:

$AXIS_LIB/commons-logging.jar:

$AXIS_LIB/jaxrpc.jar:

$AXIS_LIB/saaj.jar:

$AXIS_LIB/log4j-1.2.8.jar:

$AXIS_LIB/xml-apis.jar:

$AXIS_LIB/xercesImpl.jar

setenv PATH /usr/tomcat/bin:$PATH

You can start the Tomcat Web server using the following script (in
/usr/tomcat/bin):

startup.sh

and shut it down using the following script:

shutdown.sh

13.4.2 A Simple Web Service

Firstly, note that as with the other programming sections in this book, the
source files and associated scripts can be downloaded from:

http://www.cleverfish.co.uk/peerbook/

The Web service given here provides a simple digit incrementor service. The
code is trivial but provides a simple demonstration of what a Web service
looks like in Java. The implementation increments a Java Integer but could
easily be implemented in another language if hosted differently:

public class SilverService {

public Object getIncrement(Object number) {

if (number instanceof Integer)

number = new Integer(((Integer)number).intValue()+1);
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return number;

}

}

You’ll notice straight away how simple this looks, unlike other systems, e.g.,
Jini and Jxta, illustrated elsewhere in this book. Web services do not need
to be persistent (even though OGSA-based services provide this facility) and
therefore do not need any special requirements on the service side. Further,
there is a strong focus on service environments, which provide behind-the-
scenes mechanisms to help with the deployment details, e.g., creating the
WSDL, locating the class, etc. Therefore, what is left is a very open, flexible
and simple service-side implementation.

The SilverService class simply checks for an appropriately wrapped class,
i.e., a Java Integer, and increments its value. The returned Integer object
contains this incremented value. The service is not typed; i.e., the inputs and
outputs are Java Objects but it would be trivial to change these to Integers
if you wanted to restrict your class to such object types.

When developing Web services within Axis, the class files need to be
located by the deployment tools and therefore the simplest thing to do
is to make sure the compiled Java class (i.e., bytecode) is put in the
/usr/tomcat/webapps/classes directory, which is automatically added to the
default classpath. You can provide your individual services within Java pack-
ages also, if you wish to organize your services into directories.

13.4.3 Deploying a Web Service Using Axis

To deploy a service, you need to configure an Axis Web Service Deployment
Descriptor (WSDD) file to describe the service you wish to deploy:

<deployment xmlns="http://xml.apache.org/axis/wsdd/"

xmlns:java="http://xml.apache.org/axis/wsdd/providers/java">

<service name="SilverService" provider="java:RPC">

<parameter name="className" value="SilverService"/>

<parameter name="allowedMethods" value="*"/>

</service>

</deployment>

The WSDD format contains a deployment XML element. This defines the
“Java” namespace along with a service element, which actually defines the
service. The service element may have any or all of the following:

1. a request flow
2. a pivot Handler, which is the service provider
3. a response flow.
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In our case, the provider is “java:RPC,” i.e., remote procedure caller
(RPCProvider). The parameter tag specifies which class (i.e., SilverSevice)
the provider should load and which methods in that class to call. Here, we
specify that any public method on our class may be called. Alternatively, the
accessible methods could be restricted by using a space or comma separated
list of available method names. WSDD files are fairly reusable and typically
only require minor modifications for use by other services, e.g., service name
and class name.

The WSDD description is then passed to the Axis AdminClient, which
compiles a Web service based on these parameters and deploys the Web service
in the appropriate place, as follows:

java -cp $AXISCLASSPATH org.apache.axis.client.AdminClient

-lhttp://localhost:8080/axis/services/AdminService deploy.wsdd

Alternatively, you could utilize the Axis Java Web services (JWS) deploy-
ment mechanisms by renaming (or copying) your SilverService.java implemen-
tation to /usr/tomcat/webapps/SilverService.jws. The Apache subsystem will
then automatically locate the file, compile the class and convert the SOAP
calls correctly into Java invocations of the service class. However, JWS is only
intended to deploy simple services.

To ensure that the Web service has been installed correctly, you can check
the Web services deployed within the Axis environment using a Web browser
and navigating to the View the list of deployed Web services option on the
Axis configuration page (see upper part of Fig. 13.8). This should display
something similar to the bottom screen shot, if the service has been deployed
correctly.

13.4.4 Web Service Invocation

The following code provides the client-side implementation of the Web service:

import org.apache.axis.client.Call;

import org.apache.axis.client.Service;

import javax.xml.namespace.QName;

public class Client {

public static void main(String [] args) {

try {

String endpointURL =

"http://localhost:8080/axis/services/SilverService";

Integer in = new Integer(10);

Service service = new Service();

Call call = (Call) service.createCall();

call.setTargetEndpointAddress(



234 13 Web Services Deployment

Fig. 13.8. The screen shot on the top shows the Axis home page, giving a list of
utilities. The bottom shot shows the list of the deployed Web services, including the
SilverService just deployed.

new java.net.URL(endpointURL) );

call.setOperationName(

new QName("SilverService", "getIncrement") );

Object ret = call.invoke( new Object[] { in } );

System.out.println("Object = " + ret.getClass().getName());

System.out.println("Number Returned : " + ret.toString());

} catch (Exception e) {

System.err.println(e.toString());

}

}

}

First, we create new Axis Service and Call objects, which store metadata
about the service to invoke. We set the endpoint address URL to specify
the actual location of the class. Here, our SilverService class is located in
the http://localhost:8080/axis/services/ directory. We then set the operation
name, i.e., the method call that we wish to invoke on the service (i.e., get-
Increment()). We can now invoke the service by passing it any Java Object
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or an array of Java Objects. Here, we pass it a Java Integer containing the
value 10.

To invoke the service, the client-side implementation (Client.java) is exe-
cuted, as follows:

java Client

which will produce the following output:

Object = java.lang.Integer

Number Returned : 11

13.4.5 Cleaning Up and Un-Deploying

To un-deploy the Web service, you first need to create a corresponding WSDD
undeployment file to the previous deployment file, as follows:

<undeployment xmlns="http://xml.apache.org/axis/wsdd/">

<service name="SilverService"/>

</undeployment>

Be careful to check the spelling of the service name. If this is incorrect then the
service will not be un-deployed and no corresponding error will be provided
to indicate this. The un-deployment file is passed to the AdminClient Axis
class for processing:

java -cp $AXISCLASSPATH org.apache.axis.client.AdminClient

-lhttp://localhost:8080/axis/services/AdminService undeploy.wsdd

Again, you can verify that the service has been correctly un-deployed by
checking the list of deployed services using a Web browser as described earlier.

13.5 Conclusion

In this chapter, a concise overview of SOAP, WSDL and UDDI was given.
SOAP provides an envelope for sending XML messages to specify routing de-
tails and other information without needing to modify the actual message.
WSDL provides an interface definition for the Web service along with its
deployment details in such a way as to decouple the interface from the imple-
mentation. This decoupling allows for the virtualization of services in that a
service interface can have multiple back-end implementations. UDDI serves as
a lookup server or yellow pages for Web services and can be used to retrieve
the locations of a Web service’s interface, based on search criteria. Finally, an
example Web service implementation was given along with the steps involved
in hosting it within a popular Web services hosting environment.



Part IV

From Web Services to Future Grids
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In this theme, we take a look at how the Grid community is adopting
and exposing its functionality as Web services, in the form of OGSA-based
distributed services. OGSA services re-introduce the notion of state to a Web
service so that services can be referenced or monitored and that steering
applications can receive distributed notifications of state changes.

This convergence of technologies (if widely adopted by both communities)
could represent a major step forward in the goal of ubiquitous deployment,
which is needed to make the Grid dream a reality. This integration and related
issues are discussed in Chapter 14, the final chapter of this book.

Looking at the more longer-term future, as Grid deployment increases,
other technologies such as P2P will become increasingly more important to
address the issues of scalability and discovery in real-world dynamic environ-
ments, which some applications are already employing. However, for this to be
successful, any proposals need to undergo a standardization (or other) process
or be accepted by the community at large. There is currently much effort in
this direction [193] [194].
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OGSA

The Globus toolkit (GT) is the de facto open source toolkit for Grid com-
puting. The functionality of the GT version 3.x is exposed as a collection
of virtual Open Grid Services Architecture services [21]. OGSA services, or
Grid services, extend Web services, discussed in the previous two chapters,
to add features that are often needed within distributed applications. Specifi-
cally, OGSA adds state to Web services in order to control the remote service
during its lifetime. Whereas Web services are stateless, as noted in Section
3.4.1, OGSA-based services are stateful. OGSA services represent the GT’s
various components, e.g., GRAM, MDS, etc., described in Chapter 4, using
this unified representation and can be aggregated and used within virtual
organizations in a number of different ways.

However, the road to OGSA realisation has not been easy. During the two
years from its conception, 2002, the infrastructure for Web services was defined
through the Open Grid Services Infrastructure specification. This specification
defined the extensions to WSDL needed in order to represent and enable
stateful Web services. The designers of OGSI introduced the notion of a Grid
service, which extended a basic Web service to attach a number of additions
to which a Grid service must adhere. Stateful resources within OGSI were
modelled as Web services that support the GridService portType (see Section
13.2.2), which is an extension of the WSDL portType.

This approach led to much unrest in the Web service community for sev-
eral reasons discussed in Section 14.3.1 but principally because Grid services
did not conform to Web service standards. For these reasons, OGSI has been
surpassed by a new specification called the Web Services Resource Framework
that addresses these criticisms. In the GlobusWORLD conference at the be-
ginning of 2004, Foster [139] described Globus as “a balancing act between
addressing short-term needs (software engineering and development plus sup-
porting user needs) and long-term needs (pushing development of standards,
conducting research and keeping the project on the ‘bleeding edge’).” He
added that “Globus must be a research and a development organization.”
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This chapter therefore will be split into three sections. The first section will
describe the OGSA architecture, the second OGSI and the third the newly
adopted WSRF, upon which the Globus toolkit version 4, will be based.

14.1 OGSA

The Open Grid Services Architecture Framework is the Globus and IBM vision
for the convergence of Web services and Grid computing. OGSA was presented
at the GGF in February 2002 and described in the accompanying paper [21],
which outlines this new architecture for distributed systems integration. The
GGF has since set up an Open Grid Services working group to review and
refine the architecture.

OGSA adopts the service-oriented architecture, discussed in Section 3.3 in
order to expose Grid functionality as collections of service-oriented software
assets. To this end, the OGSA authors define how the various Grid technolo-
gies can be implemented and applied through the use of this service-oriented
approach. They noted “we view a Grid as an extensible set of Grid ser-
vices that may be aggregated in various ways to meet the needs of VOs,
which themselves can be defined in part by the services that they operate and
share” [21].

In the next section, Grid services are described and put into context with
the current Web services.

14.1.1 Grid Services

At the core of the OGSA specification and implementation (see Section 14.2)
is a Grid service. A Grid service is “a Web service that provides a set of well-
defined interfaces and that follows specific conventions” and more specifically
it is ”a (potentially transient) stateful service instance supporting reliable and
secure invocation (when required), lifetime management, notification, policy
management, credential management, and virtualization” [21].

Simply put, within the OGSA model, everything is represented as a Grid
service, whether it is a computational resource, a storage resource, a network,
an application, a database, etc. The difference between OGSA and Web ser-
vices is that within OGSA, the Grid services can be managed, i.e., created,
monitored, destroyed, etc. The OGSA architecture therefore allows an ap-
plication to obtain references to Grid service instances that can be used to
monitor a service and access its local data directly, similar in principle to the
functionality provided by distributed object systems. However, all of this is
achieved within XML documents that are passed between the Grid services,
in the same way as Web services.

Grid services are built on Web services for a number of reasons. First,
Web services support dynamic discovery and composition in heterogeneous
environments by using WSDL to describe the Web service in such a way that
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it is independent of any specific implementation of that service (see Section
13.2.3). Second, there has been a widespread adoption of Web services tech-
nology and this helps for two reasons: first, there are a number of tools that
already exist, e.g., WSDL to language convertors; and the actual uptake of
the technology is vast, which helps the ubiquitous deployment needed to re-
alise a truly global Grid (see Section 4.2). Further, Web services are built on
standards-based technology, which is necessary for such widespread adoption
(see Section 4.5.2).

At the core of Grid services, the focus is on the management of transient
service instances. Within a Grid computing environment, services often need
to be created dynamically, as and when a service is needed. As an example,
let’s take a look at a simple migration scenario. Migration involves moving the
execution of a job across the network from one machine to another, perhaps
because the job is not running quickly enough at present. There are several
steps needed for this simple scenario, as shown in Fig. 14.1.

1. Checkpoint

running job

(i.e. save

state)

Migration Controller

e.g. Portal/Application

Struggling

Computer ..

Faster & Shinier

Machine..

2. Stop job

4. Start job

3. Transfer

checkpoint file

Fig. 14.1. A simple job migration scenario.

The first step is to save the current state of the job that you wish to
migrate, which is called checkpointing. Typically, a job checkpoints by saving
its state to a file. This information can be passed to another instance of the
same job at a later stage in order to resume the progress. Second, the first
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job needs to be stopped because any further work would be redundant as it
would not be checkpointed.

Checkpointing can be achieved in numerous ways depending on the par-
ticular scenario and the application that is controlling the migration. For
example, a job could checkpoint itself and then coordinate the rest of the
migration process by using the relevant services directly or a portal could
manage these tasks. In this example, the migration process is controlled by a
third-party migration controller, which monitors the job’s progress and makes
a decision on whether to migrate the job to another machine based on some
quality of service requirement: e.g., perhaps the job is running too slow to
complete by a given time. Such coordination could be achieved by using a
communication mechanism between the controller and the job (e.g., sockets,
Jxta, Jini, etc.) or it could be implemented with a Grid service directly using
the stateful distributed systems mechanisms.

Once the job has been stopped the checkpoint file needs to be moved to the
machine to which the job is being migrated. This would typically be achieved
by using a Grid data service, e.g., GridFTP. There may already exist such a
service on both machines but, if not, one may need to be dynamically started
and have a lifetime for the duration of the file copy.

Once the file is in place, another Grid service, e.g., GRAM, needs to be
discovered and invoked in order to submit the job to the new machine. Again,
such a service may be associated with this one operation and consequently
transient in nature, having a lifetime equivalent to the lifetime of the job (since
GRAM monitors the job during execution). When the job starts, it reads the
data from the checkpoint file and resumes execution. This example is simple
but it does illustrate the types of services needed and their potential transient
deployment.

14.1.2 Virtual Services

Grid services, like Web services, are virtual services. Virtual services are ser-
vices that provide a consistent interface to diverse back-end implementations
as described in Section 3.2.2. This virtualization of services is essential for
overlaying services on heterogeneous collections of devices, which are inherent
within a Grid. Access to the resources therefore becomes transparent, which
allows the mapping of multiple logical resource instances onto the same phys-
ical resource, which is a necessity for providing state to the distributed OGSA
services.

Virtual services appear in other systems described in this book. For exam-
ple, Jxta can provide the same behaviour and have multiple back-end imple-
mentations of the same service interface. Jini, on the other hand deals strictly
with distributing Java objects and through the use of RMI and Java proxies
makes it unsuitable for service virtualization.

Within the context of the Grid, the virtual Grid services help to provide a
virtual overlay across the various Grid resources, providing the ability to map
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common service semantic behaviour onto multiple platforms; e.g., the same
service could be built for Linux, Solaris and Windows machines, and the user
would not realise (or care) which platform was hosting the service.

14.1.3 OGSA Architecture

OSGA uses WSDL (see Section 13.2.3) to describe Grid services. OGSA pro-
posed several new WSDL portTypes that can be used to access this added
functionality, which were refined by the OGSI specification. These will be
described in the next section.
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Fig. 14.2. The open Grid services architecture showing the OGSI layer that provides
the infrastructure to expose OGSA services.

Figure 14.2 shows how OGSI fits in with the OGSA architecture. At the
core of a Grid service is the Web service framework that enables XML mes-
sages to be sent between distributed processes. At the next level there is the
OGSA infrastructure that builds on Web services to provide the stateful be-
haviour that a Grid service requires. Here, this is provided by OGSI but this
is now specified using different syntax within the WSRF.

Even though the manner and syntax in which the OGSA services are de-
fined has changed, this does not affect the semantic behaviour of the resulting
services; i.e., both provide stateful Web services for representing network-
enabled components on the Grid. This is indicated at the left-hand side of the
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figure, which emphasises the fact that the middle three layers of the archi-
tecture are currently going through a standardization process, i.e., still under
debate.

The core Globus services are unlikely to change significantly but their
external service representation may be tuned. The fact that these may be
built upon OGSI or WSRF makes little difference to the outcome; it’s really
just syntax. The core services are outlined in Section 14.2.1 and the more
advanced services build upon the core services to expose greater functionality
and so on. At the top of the architecture, we have the domain-specific services
that could be as specific as solving a particular problem or again represent
common functionality for a subset of application domains.

14.2 OGSI

The open Grid services infrastructure is concerned with creating the stan-
dard interfaces that enable OGSA-based services. OGSA lays the foundations,
whilst OGSI concentrates on the details of the interfaces that are required for
OGSA. OGSI defines a component model by using extended WSDL and XML
schema definitions. “OGSI is concerned primarily with creating, addressing,
inspecting, and managing the lifetime of stateful Grid services” [21]. It also
defines mechanisms for asynchronous notification of state change.

Specifically, the OGSI specification defines a number of WSDL extensions
(some of which have analogous support in WSDL 2.0 [102]) that define the
following functionality (a list of the corresponding portTypes and operations
is given in Fig. 14.3):

1. Grid Service Descriptions and Interfaces: provides descriptions of
the Grid service interface via GWSDL (Grid WSDL), an extension to the
WSDL standard contain the Grid extensions. OGSI allows descriptions of
the actual instance of the Grid service; e.g., the instance could potentially
be stateful and transient and needs to be addressable.

2. Service Data: OGSI extends WSDL to allow users to gain access to a
service’s state information, e.g., a service’s internal data; analogous to
access methods on a Java object, e.g., setX(), getX(), etc. OGSI defines
mechanisms that allow both querying (pull model) and subscription-based
(push model) access to the data. The subscription-based access is similar
to attaching a Java Listener to an object or subscribing to a newsgroup.
Within OGSI, essentially, you subscribe to a data element and thereafter
any change occurring on that element is sent to you (via notification).
OGSI defines the NotificationSource, NotificationSink, and Notification-
Subscription WSDL portTypes for this purpose.

3. Naming and Name Resolution: a Grid service can be dynamically
created and therefore you need to obtain a reference in order to gain ac-
cess to its state information. OGSI defines a two-level naming scheme for
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Fig. 14.3. A list of the OGSI portTypes used to define the various interfaces nec-
essary. Also the operations defined by the Grid service portType are shown.

this purpose: a Grid Service Handle (GSH) and a Grid Service Refer-
ence (GSR). The GSH is an invariant abstract globally unique name that
identifies the service instance. It is guaranteed to be unique from all other
service instances but has no protocol or instance-specific information. The
GSR, on the other hand, encapsulates the information required to interact
with a particular service instance. For example, in a SOAP environment,
the GSR will typically contain the WSDL service and binding informa-
tion (see Section 13.2.3). Within one execution, you could potentially have
many different GSRs if the job migrates from machine to machine but it
will retain the same GSH. OGSI contains a resolver function therefore
to extract the current GSR from the GSH, which is performed by the
HandleResolver OGSI portType.

4. Service Life Cycle: OGSI provides factories for creating transient Grid
services. The Factory OGSI portType is used to create a Grid service
instance. The destroy GridService operation is used to destroy a service
instance. Further, OGSI allows users to specify the lifetime of a service,
i.e., when a service can or should be terminated. OGSI uses a soft-state
approach, where services are created with a specified lifetime, using the
requestTerminationAfter (earliest termination time) or requestTermina-
tionBefore (latest termination time) OGSI GridService operations. The
initial lifetime can be extended by request and if the time period expires
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then the hosting environment is free to terminate the service instance and
reclaim any resources.

5. Fault Type: OGSI represents service faults (or exceptions) in a common
format. The fault model consists of a standard XSD type, ogsi:FaultType
that defines two required elements: the originating service and a times-
tamp. It also defines several optional elements including descriptions of the
fault, a fault code and extensibility elements that can be used to convey
custom information.

6. Service Groups: OGSI allows users to represents groups of services. This
is particularly useful for virtual hosting environments, which can group
all services that it has created within a VO, for example. OGSI defines
three portTypes for this purpose, as shown in Fig. 14.3: ServiceGroup,
ServiceGroupRegistration and ServiceGroupEntry.

There exist around half a dozen independent implementations of the OGSI
specification. In the next section, a brief overview of one such implementation,
the Globus Toolkit, version 3, is given.

GT3 Core

GT3 Security

GT3 Base Services 

Data

Services

Other

Grid

Services

Fig. 14.4. GT3 architecture.
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14.2.1 Globus Toolkit, Version 3

GT3, officially released in mid-2003, is based on the OGSI specification. All
services from GT2, described in Chapter 4, have been adapted to conform to
the OGSI specification. This section briefly outlines the structure and contents
of this toolkit.

Figure 14.4 illustrates the architecture of the GT3 toolkit. At the lower
level you have the GT3 core, which implements the core OGSI infrastruc-
ture to enable the other services to be exposed as Grid services. For example,
the GridService core is implemented here, e.g., obtaining references and han-
dles, the notification framework, the state management and service data, as
described in Section 14.2.

The next layer implements the GT3 security layer, which adapts the mech-
anisms outlined in Section 4.7.2 to work within the service-oriented framework
technology stack. For example, Globus has created a new secure protocol,
called httpg, which is based around the transport layer security mechanisms,
described in Section 8.5, e.g., TLS and SSL. They have also adapted the SOAP
layer security based on WS-Security [187], XML Encryption [186] and XML
Signature [185] standards. For mutual authentication, delegation, etc., X. 509
certificates are used in a similar fashion to those described in Section 4.7.2.

The next layer consists of the GT2 components translated to Grid services,
e.g., MDS, GridFTP, GRAM, etc., plus the addition of new services that have
been developed since GT2, e.g., a file streaming service, a reliable file transfer
service and a managed-job service. See [28] for more information.

The structure of the toolkit is built to reuse functionality of the lower
levels and it is anticipated that many new services will be implemented, as
illustrated in Fig. 14.4, by the Globus team itself and other services created by
other companies and organizations. Within GT3, an example of a higher-level
service is illustrated here, for replica management of data files stored across the
Grid. This service utilizes other data services already implemented in order
to replicate and catalogue data. Since the release of v2.4, the Globus Web
site has experienced more than 10,000 downloads per month and therefore
momentum is building and many groups are already developing such services.

14.3 WSRF

In parallel with the work on OGSI through the GGF, the Web services com-
munity were working on standardizing their own components which related
to aspects of the OGSI specification. In particular, WS-Addressing [103] was
developed that provides a transport-neutral mechanism for representing ser-
vice endpoints to Web services, which duplicates the work on the Grid handles
and references, described in Section 14.2. Further, the OGSI specification re-
sulted in a number of criticisms from the Web services community, which in
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turn, compromised Globus’ goal of ubiquity. Consequently, a compromise was
reached through the WSRF [25] and [184].

On the 20th January 2004, Akamai, The Globus Alliance, HP, IBM and
Sonic Software announced new Web service specifications that integrated Grid
and Web services standards [26]. This resulted in two proposed infrastruc-
tures, which are a repackaging and rearrangement of OGSI: the Web Services
Resource Framework and Web Services Notification (WS-Notification).

In a keynote speech, Foster noted: “OGSA is a work in progress, but it’s
moving forward rapidly” [139]. He further acknowledged the recent ”bump in
the road” by the necessity to migrate OGSI to the WSRF. This effectively
means that the OGSI Grid services are now considered deprecated and should
therefore be converted to WSRF. Consequently, GT4 will be written according
to the WSRF specification.

14.3.1 Problems with OGSI

Work on WSRF started late in the summer of 2003, following feedback on
OGSI from the Web services community. The WSRF involved input from
senior Web services architects, which resulted in a prompt release of the WSRF
specification for public comment. The Web services community identified four
main problems with the OGSI specification [183]:

• Too Much in One Specification: the OGSI specification defined a num-
ber of areas of functionality. Many felt that this was far too much for one
specification and that a clear separation of functionality would provide a
more flexible infrastructure for incremental adoption, allowing services to
implement some things but not others. For example, a service may want
to retain state but not implement event notification. WSRF therefore par-
titions the OGSI specification into six distinct areas, outlined in Section
14.3.3.

• Incompatible with Web Services and XML Tooling: OGSI used
XML schema which were incompatible with XML tooling, e.g., JAX-
RPC, and it extended the WSDL portType causing compatibility prob-
lems. WSRF uses standard XML schema, familiar to developers and ex-
isting tooling and annotates the portType definition, making it compatible
with WSDL 1.0.

• Too Object Oriented: Within OGSI, a Grid service is a Web service that
encapsulates the resources state; i.e., both the service and resource states
are coupled. Therefore, current Web services would have to be extended
and rewritten to create a Grid service. In WSRF, the service and the
resource state are separated; see Section 14.3.2.

• Relied on WSDL 2.0: OGSI exploited constructs from the promised
WSDL 2.0 specification, which had been delayed in coming, resulting in
difficulty with existing Web services tooling. WSRF conforms to the WSDL
1.0 specification entirely.
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14.3.2 Grid Services or Resources?

The basic requirement addressed by both OGSI and WSRF is the ability
to create, address, inspect, discover and manage stateful resources [182]. As
noted previously (in Section 14.1.1), services that conform to OGSI specifica-
tions are called Grid services. Grid services in OGSI however extended Web
services in order to provide this extra functionality. Such an approach was
deemed heavyweight by the Web services community and therefore WSRF
uses a different approach that separates the message processor (i.e., the Web
service) from the resource (i.e., the stateful instance).

The essential difference here is that OGSI uses the same construct to rep-
resent a Web service and the stateful resource, whereas WSRF uses different
constructs for both. Briefly, WSRF uses the so-called implied resource pattern
to define the relationship between the Web services interface and resources.
Any service that adheres to the implied resource pattern is called a WS-
Resource and the properties of the WS-Resource can be accessed through the
Web services interface.

The functionality of both an OGSI Grid service and a WS-Resource is
essentially the same but the WSRF approach is more flexible in that it allows
many-to-many mappings between Web services and any associated stateful
resource.

14.3.3 OGSI Functionality in WSRF

For details of the conversion between OGSI and WSRF, see [183]. Briefly
however, the WSRF is divided into five specifications along with the OGSI
notification specification, resulting in six different areas:

• WS-ResourceProperties: covers the concept of WS-Resource and de-
scribes how one associates stateful resources using Web services. Further,
it describes how a service’s properties (i.e., stateful internal data) are re-
trieved, changed and deleted from a resource.

• WS-ResourceLifetime: allows a user to specify a lifetime for a WS-
Resource.

• WS-RenewableReferences: describes how the WS-Addressing endpoint
reference is annotated in order to provide the necessary information to
retrieve a new reference when the current reference becomes invalid.

• WS-ServiceGroup: replaces the OGSI grouping mechanisms, described
in Section 14.2.

• WS-BaseFault: replaces the OGSI representation for service faults or
exceptions.

• WS-Notification: describes the publish/subscribe asynchronous notifi-
cation models that can be used to listen for remote state changes or ser-
vice data element updates. The WS-Notification has also been extended
to include a variety of functions implemented in other event notification
systems.
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14.3.4 Globus Toolkit, Version 4

At the time of writing (February 2004), the GT4 toolkit is projected to be
released officially (i.e., non-alpha or beta release) by mid-august 2004. This
toolkit will consist of a transformation from GT3 OGSI-based services to
WSRF-based services and associated documentation. Other near-term goals
include providing internationalization support for languages other than En-
glish.

14.4 Conclusion

In this chapter, an overview of the Open Grid Services Architecture (OGSA)
and corresponding specifications were given. OGSA is primarily concerned
with extending Web services to include state information, necessary for dis-
tributed systems integration. There have been, to date, two specifications that
have resulted from this architecture.

The first, the Open Grid Services Infrastructure (OGSI), extended Web
services to create Grid services and used techniques which were outside the
scope of current Web service standards and tooling but also duplicated other
work within the Web services community. This resulted in the Web Services
Resource Framework (WSRF) that addressed these shortfalls by subdivid-
ing the OGSI specification into six different areas and reporting to conform
to current standards. We’ll have to wait and see if this is accepted by the
community at large.
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Want to Find Out More?

This appendix contains a list of links to the core organizations and umbrella
projects for many of the distributed systems discussed in this book. This
list is by no means exhaustive but it does provide some pointers to on-line
information for further reading.

A.1 Grid Computing

• Global Grid Forum (GGF), http://www.ggf.org/ contains informa-
tion about Grid-related events. There are three GGF meetings per year
but the one held every October in Chicago is only for active working or
research groups. The GGF is a forum of some 5000+ individual researchers
and practitioners working on distributed computing or Grid technologies,
and has a wide range of technical groups working on aspects of Grid tech-
nology and deployment.

• GridForge, http://forge.gridforum.org/ is the working respository
for GGF Working and Research Groups, housing the related documents
through an open public comment process.

• Globus: http://www.globus.org/ hosts the Globus middleware for
Grid computing and all associated documentation.

• GRIDSTART, http://www.gridstart.org/ contains information
about the EU Framework 5 IST-funded Grid research projects. You
can find links to CrossGrid, DAMIEN, DataGrid (EDG and EGEE),
DataTAG, EGSO, EuroGrid, GRIA, GridLab and GRIP, along with a
number of other projects that form the GRIDSTART cluster. The project’s
intention is to stimulate the widespread deployment of Grid technology by
raising the awareness of potential users of the solutions already developed
or being developed. They also organize IST Concertation Meetings on
Grid Research, twice yearly, which hosts a number of plenary talks and
European technical working groups.
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• UK e-Science, http://www.rcuk.ac.uk/escience/ is a cite where you
can find more information about the UK e-Science program.

• National e-Science Center: http://www.nesc.ac.uk/ is a site con-
taining links to a number of projects within the UK e-Science program.

• GridCafe, http://gridcafe.web.cern.ch/gridcafe/ is a place to learn
various aspects of Grid computing, from the name and the dream to a list
of concrete projects around the world.

• Grid Technology Repository (GTR), http://gtr.globus.org/ was
set up as a place for people to publish and discover work related to Grid
technology.

• The Grid Computing, http://www.gridcomputing.com/ informa-
tion center is designed to promote the development of technologies which
provide seamless and scalable access to wide-area distributed resources.

• Grid Today, http://www.gridtoday.com/ provides daily news and
information for the Grid community.

• The Grid Report, http://www.thegridreport.com/ is a collection
of news items about distributed and Grid computing. It contains the latest
news and information about Grid computing; it’s run by software engineers
and its focus is for software engineers.

• Grid Computing Planet, http://www.gridcomputingplanet.com/
is one of many sites run by JupiterWeb, the on-line division of Jupiter-
media, which is a leading global provider of information, images, research
and events for information technology, business and creative professionals.
The Grid Computing Planet is in the EarthWeb information section and
provides numerous articles, news events and so on, for Grid computing.

• CCGrid, http://www.ccgrid.org/ is a yearly IEEE International Sym-
posium on Cluster Computing and the Grid. It also hosts a number of
workshops.

A.2 P2P Computing

• Gnutelliums, http://www.gnutelliums.com/ provides a comprehen-
sive directory of Gnutella clients for Windows, Linux/UNIX, and Macin-
tosh, some of which are provided below:
– BearShare, http://www.bearshare.com is a Windows file sharing

program from Free Peers, Inc.
– Gnotella, http://www.gnotella.com is clone of Gnutella for Win-

dows.
– Gnucleus, http://gnucleus.sourceforge.net/ is an open Gnutella

client for Windows.
– LimeWire, http://www.limewire.com is a very popular Java-

based Gnutella client.
– Phex, http://www.konrad-haenel.de/phex/ is also a Java client,

based on William W. Wong’s Furi.
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– Toadnode, http://www.toadnode.com is an extensible platform
for P2P networks. Its core functionality revolves around the ability to
find, retrieve and distribute data between users across multiple net-
works.

– Gnut, http://www.gnutelliums.com/linux unix/gnut/ is a com
mand-line client which implements the Gnutella protocol. It will run
on a wide range of POSIX-compliant systems including: SunOS, Linux,
FreeBSD, HP-UX and Win32.

• P2P and XML in Business, http://www.xml.com/pub/a/2001/0
7/11/xmlp2p.html provides an article discussing the integration of P2P
and XML for businesses.

• Peer-to-Peer Computing, http://p2p.ingce.unibo.it/ is a popular
yearly conference on Agents and P2P Computing (AP2PC).

• P2P4B2B, http://www.stratvantage.com/directories/p2pworkgr
oups.htm is a site listing non-commercial peer-to-peer efforts. The sites
listed are non-profit, open source or informational and have relevance to
the business use of P2P technology. The sites also represent standards
efforts.

• O’Reilly OpenP2P.com, http://www.openp2p.com/ is a site dedi-
cated to various articles on P2P-related technology. Always interesting!

• Global and Peer-to-Peer Computing, http://gp2pc.lri.fr/ is an
international yearly workshop held in conjunction with CCGrid.

• Intel P2P Developer Center, http://www.intel.com/cd/ids/deve
loper/asmo-na/eng/technologies/peertopeer/index.htm is a site
dedicated to technologies that can leverage the power of the existing end-
user’s resources on the Internet.

A.3 Distributed Object Computing

• Jan Newmarch’s Guide to JINI Technologies,
http://pandonia.ca
nberra.edu.au/java/jini/tutorial/Jini.xml provides an on-line
extensive guide to Jini Technologies.

• The Distributed Component Object Model (DCOM), http://ww
w.microsoft.com/com/tech/DCOM.asp is a Web site for finding out
about distributed DCM technology, which enables software distributed
components to communicate in a reliable, secure, and efficient manner. It
was previously called “Network OLE” and was based on the Open Software
Foundation’s DCE-RPC specification.

• CORBA, http://www.corba.org/ is the home page for the Common
Object Request Broker Architecture (CORBA) middleware. It contains a
number of resources, CORBA success stories and pointers to the Object
Management Group.
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• Object Management Group (OMG), www.omg.org which is estab-
lishing a model-driven architecture through its worldwide standard specifi-
cations including CORBA, CORBA/IIOP, the UML, XMI, MOF, Object
Services, Internet Facilities and Domain Interface specifications.

• Jini, http://www.jini.org/ is a central place for finding out information
about Jini. It contains new information, has discussion groups and allows
users to exchange code and ideas.

• Distributed Object Computing, http://www.yy.ics.keio.ac.jp/∼
suzuki/object/dist comp.html is a useful page containing a number of
links and information about distributed object systems including CORBA,
Jini, MOMs and distributed agents.

A.4 Web Services

• The W3C, http://www.w3.org/ is the World Wide Web consortium,
which is the foremost forum for information, commerce, communication
and collective understanding for the Web-related technologies. The W3C
develops interoperable technologies and releases specifications, guidelines,
software and tools. For example, the W3C has developed the specifications
for XML, SOAP and WSDL. It is the first stop on discovering standardized
Internet technologies.

• The W3C, http://www.w3.org/2002/ws/ is a starting point on the
W3C Web site that lists Web service-related technologies on which W3C
is currently working.

• OASIS, http://www.oasis-open.org/ is a non-profit consortium,
which attempts to drive the development and adoption of e-business stan-
dards. For example, it has developed specifications for ebXML and UDDI.

• XML.com, http://www.xml.com/ provides various resources for
XML including a section on Web services.

• WebServices.org, http://www.webservices.org/ is a portal for find-
ing out about Web services. It contains newsletters, introductions to Web
services, news and numerous articles.

• Web Services Architect, http://www.webservicesarchitect.com/
hosts a collection of articles and links for Web services from both a business
and a technical perspective.

• Microsoft’s Web Services Developer Center, http://msdn.micro
soft.com/webservices/ is a site dedicated to providing information to
Web service developers. It hosts many useful articles of the use of various
Web service technologies and lists the new Web service specifications.

• IBM Developer Works for Web Services, http://www-136.ibm.co
m/developerworks/webservices/ contains a number of technical arti-
cles and specifications about Web services and related technologies. It also
has a download section and learning resources.
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• WS-I, http://www.ws-i.org/ is “an open, industry organization char-
tered to promote Web services interoperability across platforms, operating
systems, and programming languages.” It works with industry and stan-
dards organizations to respond to customer needs.

• XMethods, http://www.xmethods.com/ lists the publicly available
Web services. You can access the lists of Web services by using their UDDI
server, for example, to dynamically discover and connect to available re-
sources.

• Web Services Journal, http://www.sys-con.com/webservices/ is
an on-line resource that lists real-use cases of how various companies and
organizations are deploying and using Web services. There is a news section
that lists new incentives that are happening within the Web services world.

• Java Technology and Web Services, http://java.sun.com/webser
vices/index.jsp covers the various Java tools and packages that can sup-
port the development and deployment of Web services.
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RSA Algorithm

Figure B.1 shows an outline of the RSA algorithm for encryption, taken from
Tanenbaum and van Steen [1]. For more information, please see the original
text.

Find P and Q, two large (e.g., 1024-bit) prime numbers:

1. Choose E such that E is greater than 1, E is less than PQ, and E and (P-1)(Q-1) are

relatively prime, which means they have no prime factors in common. E does not have

to be prime, but it must be odd. (P-1)(Q-1) can't be prime because it's an even number.

2. Compute D such that (DE - 1) is evenly divisible by (P-1)(Q-1). Mathematicians write

this as DE = 1 (mod (P-1)(Q-1)), and they call D the multiplicative inverse of E. This is

easy to do -- simply find an integer X which causes D = (X(P-1)(Q-1) + 1)/E to be an

integer, then use that value of D.

3. The encryption function is C = (T^E) mod PQ, where C is the ciphertext (a positive

integer), T is the plaintext (a positive integer), and ^ indicates exponentiation. The

message being encrypted, T, must be less than the modulus, PQ.

4. The decryption function is T = (C^D) mod PQ, where C is the ciphertext (a positive

integer), T is the plaintext (a positive integer), and ^ indicates exponentiation.

…and now:

• The public key is the pair (PQ, E).

• The private key is the number D.

• The product PQ is the modulus (often called N in the literature).

• E is the public exponent. D is the secret exponent.

Fig. B.1. An outline of the RSA public-key system, which is based on the difficulty
of factoring large numbers that are the product of two prime numbers. This factoring
problem has been studied for hundreds of years and still appears to be intractable.
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